[Équations de Hamilton–Jacobi à non-linéarités monotones sur des cônes convexes]
We study the Cauchy problem of a Hamilton–Jacobi equation with the spatial variable in a closed convex cone. A monotonicity assumption on the nonlinearity allows us to prescribe no condition on the boundary of the cone. We show the well-posedness of the equation in the viscosity sense and prove several properties of the solution: monotonicity, Lipschitzness, and representations by variational formulas.
Nous étudions le problème de Cauchy pour une équation de Hamilton–Jacobi où la variable spatiale appartient à un cône convexe fermé. Une hypothèse de monotonicité sur la non-linéarité nous permet de nous affranchir de prescrire une condition au bord du cône. Nous établissons le caractère bien-posé de l’équation au sens des solutions de viscosité et démontrons quelques propriétés : monotonicité, bornes Lipschitz et représentation des solutions par des formules variationnelles.
Accepté le :
Publié le :
Keywords: Hamilton–Jacobi equation, monotonicity, convex cone
Hong-Bin Chen 1 ; Jiaming Xia 2

@article{AFST_2025_6_34_1_1_0, author = {Hong-Bin Chen and Jiaming Xia}, title = {Hamilton{\textendash}Jacobi equations with monotone nonlinearities on convex cones}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1--45}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 34}, number = {1}, year = {2025}, doi = {10.5802/afst.1804}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1804/} }
TY - JOUR AU - Hong-Bin Chen AU - Jiaming Xia TI - Hamilton–Jacobi equations with monotone nonlinearities on convex cones JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2025 SP - 1 EP - 45 VL - 34 IS - 1 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1804/ DO - 10.5802/afst.1804 LA - en ID - AFST_2025_6_34_1_1_0 ER -
%0 Journal Article %A Hong-Bin Chen %A Jiaming Xia %T Hamilton–Jacobi equations with monotone nonlinearities on convex cones %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2025 %P 1-45 %V 34 %N 1 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1804/ %R 10.5802/afst.1804 %G en %F AFST_2025_6_34_1_1_0
Hong-Bin Chen; Jiaming Xia. Hamilton–Jacobi equations with monotone nonlinearities on convex cones. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 1, pp. 1-45. doi : 10.5802/afst.1804. https://afst.centre-mersenne.org/articles/10.5802/afst.1804/
[1] On Hopf’s formulas for solutions of Hamilton–Jacobi equations, Nonlinear Anal., Theory Methods Appl., Volume 8 (1984), pp. 1373-1381 | DOI | MR | Zbl
[2] Convex Analysis and Monotone Operator Theory in Hilbert Spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 408, Springer, 2011, xvi+468 pages | DOI | MR | Zbl
[3] Statistical inference of finite-rank tensors, Ann. Henri Lebesgue, Volume 5 (2022), pp. 1161-1189 | DOI | Numdam | MR | Zbl
[4] Hamilton–Jacobi equations for inference of matrix tensor products, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 58 (2022) no. 2, pp. 755-793 | DOI | MR | Zbl
[5] Hamilton–Jacobi equations from mean-field spin glasses (2022) (to appear in Probab. Theory Relat. Fields) | arXiv | Zbl
[6] Fenchel–Moreau identities on convex cones, Ann. Fac. Sci. Toulouse, Math., Volume 33 (2024) no. 2, pp. 287-309 | DOI | MR | Zbl
[7] Some properties of viscosity solutions of Hamilton–Jacobi equations, Trans. Am. Math. Soc., Volume 282 (1984) no. 2, pp. 487-502 | DOI | MR | Zbl
[8] User’s guide to viscosity solutions of second order partial differential equations, Bull. Am. Math. Soc., Volume 27 (1992) no. 1, pp. 1-67 | DOI | MR | Zbl
[9] Viscosity solutions of Hamilton–Jacobi equations, Trans. Am. Math. Soc., Volume 277 (1983) no. 1, pp. 1-42 | DOI | MR | Zbl
[10] Viscosity solutions of Hamilton–Jacobi equations at the boundary, Proc. Am. Math. Soc., Volume 94 (1985) no. 2, pp. 283-290 | DOI | MR | Zbl
[11] Developments in the theory of nonlinear first-order partial differential equations, Differential equations. Proceedings of the Conference held at the University of Alabama in Birmingham, Birmingham, Alabama, USA, 21-26 March, 1983 (North-Holland Mathematics Studies), Volume 92, North-Holland, 1984, pp. 131-142 | Zbl
[12] Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 2010, xxi+749 pages | MR | Zbl
[13] Generalized solutions of Hamilton–Jacobi equations, Research Notes in Mathematics, 69, Pitman Publishing, 1982, 317 pages | MR | Zbl
[14] Hopf formula and multitime Hamilton–Jacobi equations, Proc. Am. Math. Soc., Volume 96 (1986), pp. 79-84 | DOI | MR | Zbl
[15] Hamilton–Jacobi equations for mean-field disordered systems, Ann. Henri Lebesgue, Volume 4 (2021), pp. 453-484 | DOI | Numdam | MR | Zbl
[16] Nonconvex interactions in mean-field spin glasses, Probab. Math. Phys., Volume 2 (2021) no. 2, pp. 61-119 | DOI | Zbl
[17] Free energy upper bound for mean-field vector spin glasses, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 59 (2023) no. 3, pp. 1143-1182 | MR | Zbl
[18] Convex analysis, Princeton Mathematical Series, 28, Princeton University Press, 1970, xviii+451 pages | DOI | MR | Zbl
[19] A remark about viscosity solutions of Hamilton–Jacobi equations at the boundary, Proc. Am. Math. Soc., Volume 96 (1986) no. 2, pp. 323-329 | DOI | Zbl
Cité par Sources :