Hamilton–Jacobi equations with monotone nonlinearities on convex cones
[Équations de Hamilton–Jacobi à non-linéarités monotones sur des cônes convexes]
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 1, pp. 1-45.

We study the Cauchy problem of a Hamilton–Jacobi equation with the spatial variable in a closed convex cone. A monotonicity assumption on the nonlinearity allows us to prescribe no condition on the boundary of the cone. We show the well-posedness of the equation in the viscosity sense and prove several properties of the solution: monotonicity, Lipschitzness, and representations by variational formulas.

Nous étudions le problème de Cauchy pour une équation de Hamilton–Jacobi où la variable spatiale appartient à un cône convexe fermé. Une hypothèse de monotonicité sur la non-linéarité nous permet de nous affranchir de prescrire une condition au bord du cône. Nous établissons le caractère bien-posé de l’équation au sens des solutions de viscosité et démontrons quelques propriétés : monotonicité, bornes Lipschitz et représentation des solutions par des formules variationnelles.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1804
Classification : 35A01, 35A02, 35D40, 35F21
Keywords: Hamilton–Jacobi equation, monotonicity, convex cone

Hong-Bin Chen 1 ; Jiaming Xia 2

1 Courant Institute of Mathematical Sciences, New York University, New York, New York, USA
2 Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2025_6_34_1_1_0,
     author = {Hong-Bin Chen and Jiaming Xia},
     title = {Hamilton{\textendash}Jacobi equations with monotone nonlinearities on convex cones},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1--45},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 34},
     number = {1},
     year = {2025},
     doi = {10.5802/afst.1804},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1804/}
}
TY  - JOUR
AU  - Hong-Bin Chen
AU  - Jiaming Xia
TI  - Hamilton–Jacobi equations with monotone nonlinearities on convex cones
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2025
SP  - 1
EP  - 45
VL  - 34
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1804/
DO  - 10.5802/afst.1804
LA  - en
ID  - AFST_2025_6_34_1_1_0
ER  - 
%0 Journal Article
%A Hong-Bin Chen
%A Jiaming Xia
%T Hamilton–Jacobi equations with monotone nonlinearities on convex cones
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2025
%P 1-45
%V 34
%N 1
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1804/
%R 10.5802/afst.1804
%G en
%F AFST_2025_6_34_1_1_0
Hong-Bin Chen; Jiaming Xia. Hamilton–Jacobi equations with monotone nonlinearities on convex cones. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 1, pp. 1-45. doi : 10.5802/afst.1804. https://afst.centre-mersenne.org/articles/10.5802/afst.1804/

[1] Martino Bardi; Lawrence C. Evans On Hopf’s formulas for solutions of Hamilton–Jacobi equations, Nonlinear Anal., Theory Methods Appl., Volume 8 (1984), pp. 1373-1381 | DOI | MR | Zbl

[2] Heinz H. Bauschke; Patrick L. Combettes Convex Analysis and Monotone Operator Theory in Hilbert Spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 408, Springer, 2011, xvi+468 pages | DOI | MR | Zbl

[3] Hong-Bin Chen; Jean-Christophe Mourrat; Jiaming Xia Statistical inference of finite-rank tensors, Ann. Henri Lebesgue, Volume 5 (2022), pp. 1161-1189 | DOI | Numdam | MR | Zbl

[4] Hong-Bin Chen; Jiaming Xia Hamilton–Jacobi equations for inference of matrix tensor products, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 58 (2022) no. 2, pp. 755-793 | DOI | MR | Zbl

[5] Hong-Bin Chen; Jiaming Xia Hamilton–Jacobi equations from mean-field spin glasses (2022) (to appear in Probab. Theory Relat. Fields) | arXiv | Zbl

[6] Hong-Bin Chen; Jiaming Xia Fenchel–Moreau identities on convex cones, Ann. Fac. Sci. Toulouse, Math., Volume 33 (2024) no. 2, pp. 287-309 | DOI | MR | Zbl

[7] Michael G. Crandall; Lawrence C. Evans; Pierre-Louis Lions Some properties of viscosity solutions of Hamilton–Jacobi equations, Trans. Am. Math. Soc., Volume 282 (1984) no. 2, pp. 487-502 | DOI | MR | Zbl

[8] Michael G. Crandall; Hitoshi Ishii; Pierre-Louis Lions User’s guide to viscosity solutions of second order partial differential equations, Bull. Am. Math. Soc., Volume 27 (1992) no. 1, pp. 1-67 | DOI | MR | Zbl

[9] Michael G. Crandall; Pierre-Louis Lions Viscosity solutions of Hamilton–Jacobi equations, Trans. Am. Math. Soc., Volume 277 (1983) no. 1, pp. 1-42 | DOI | MR | Zbl

[10] Michael G. Crandall; Richard Newcomb Viscosity solutions of Hamilton–Jacobi equations at the boundary, Proc. Am. Math. Soc., Volume 94 (1985) no. 2, pp. 283-290 | DOI | MR | Zbl

[11] Michael G. Crandall; Panagiotis E. Souganidis Developments in the theory of nonlinear first-order partial differential equations, Differential equations. Proceedings of the Conference held at the University of Alabama in Birmingham, Birmingham, Alabama, USA, 21-26 March, 1983 (North-Holland Mathematics Studies), Volume 92, North-Holland, 1984, pp. 131-142 | Zbl

[12] Lawrence C. Evans Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 2010, xxi+749 pages | MR | Zbl

[13] Pierre-Louis Lions Generalized solutions of Hamilton–Jacobi equations, Research Notes in Mathematics, 69, Pitman Publishing, 1982, 317 pages | MR | Zbl

[14] Pierre-Louis Lions; Jean-Claude Rochet Hopf formula and multitime Hamilton–Jacobi equations, Proc. Am. Math. Soc., Volume 96 (1986), pp. 79-84 | DOI | MR | Zbl

[15] Jean-Christophe Mourrat Hamilton–Jacobi equations for mean-field disordered systems, Ann. Henri Lebesgue, Volume 4 (2021), pp. 453-484 | DOI | Numdam | MR | Zbl

[16] Jean-Christophe Mourrat Nonconvex interactions in mean-field spin glasses, Probab. Math. Phys., Volume 2 (2021) no. 2, pp. 61-119 | DOI | Zbl

[17] Jean-Christophe Mourrat Free energy upper bound for mean-field vector spin glasses, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 59 (2023) no. 3, pp. 1143-1182 | MR | Zbl

[18] R. Tyrrell Rockafellar Convex analysis, Princeton Mathematical Series, 28, Princeton University Press, 1970, xviii+451 pages | DOI | MR | Zbl

[19] Panagiotis E. Souganidis A remark about viscosity solutions of Hamilton–Jacobi equations at the boundary, Proc. Am. Math. Soc., Volume 96 (1986) no. 2, pp. 323-329 | DOI | Zbl

Cité par Sources :