The dynamics of a rational surface map $f : X \dashrightarrow X$ are easier to analyse when $f$ is “algebraically stable”. Here we investigate when and how this condition can be achieved by conjugating $f$ with a birational change of coordinates. We show that if this can be done with a birational morphism, then there is a minimal such conjugacy. For birational $f$ we also show that repeatedly lifting $f$ to its graph gives a stable conjugacy. Finally, we give an example in which $f$ can be birationally conjugated to a stable map, but the conjugacy cannot be achieved solely by blowing up.
La dynamique d’une application rationnelle $f : X \dashrightarrow X$ sur une surface est plus simple à analyser lorsque $f$ est « algébriquement stable ». Dans cet article nous étudions comment la stabilité peut être réalisée en conjuguant $f$ par un changement de variable birationnel. Nous montrons que si cela peut être réalisé avec un morphisme birationnel, il existe alors une telle conjugaison minimale. Pour $f$ birationnelle, nous montrons aussi que l’on obtient une conjugaison stable par relèvement successif au graphe. Nous donnons enfin un exemple dans lequel $f$ peut être conjuguée birationnellement à une application stable, mais la conjuguée ne peut pas être obtenue uniquement par éclatement.
Accepté le :
Publié le :
Richard A. P. Birkett 1

@article{AFST_2025_6_34_1_47_0, author = {Richard A. P. Birkett}, title = {On the {Stabilisation} of {Rational} {Surface} {Maps}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {47--74}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 34}, number = {1}, year = {2025}, doi = {10.5802/afst.1805}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1805/} }
TY - JOUR AU - Richard A. P. Birkett TI - On the Stabilisation of Rational Surface Maps JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2025 SP - 47 EP - 74 VL - 34 IS - 1 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1805/ DO - 10.5802/afst.1805 LA - en ID - AFST_2025_6_34_1_47_0 ER -
%0 Journal Article %A Richard A. P. Birkett %T On the Stabilisation of Rational Surface Maps %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2025 %P 47-74 %V 34 %N 1 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1805/ %R 10.5802/afst.1805 %G en %F AFST_2025_6_34_1_47_0
Richard A. P. Birkett. On the Stabilisation of Rational Surface Maps. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 1, pp. 47-74. doi : 10.5802/afst.1805. https://afst.centre-mersenne.org/articles/10.5802/afst.1805/
[1] Periodicities in linear fractional recurrences: degree growth of birational surface maps, Mich. Math. J., Volume 54 (2006) no. 3, pp. 647-670 | DOI | MR | Zbl
[2] Continuous families of rational surface automorphisms with positive entropy, Math. Ann., Volume 348 (2010) no. 3, pp. 667-688 | DOI | MR | Zbl
[3] Degree complexity of a family of birational maps, Math. Phys. Anal. Geom., Volume 11 (2008) no. 1, pp. 53-71 | DOI | MR | Zbl
[4] A transcendental dynamical degree, Acta Math., Volume 225 (2020) no. 2, pp. 193-225 | DOI | MR | Zbl
[5] Dynamics in one non-archimedean variable, Graduate Studies in Mathematics, 198, American Mathematical Society, 2019, xviii+463 pages | DOI | MR | Zbl
[6] Algebraic Stability and Skew Products on the Berkovich Projective Line, Ph. D. Thesis, University of Notre Dame (2023)
[7] Dynamics of Bimeromorphic Maps of Surfaces, Am. J. Math., Volume 123 (2001), pp. 1135-1169 | DOI | MR | Zbl
[8] Rational surface maps with invariant meromorphic two-forms, Math. Ann., Volume 364 (2016) no. 1-2, pp. 313-352 | DOI | MR | Zbl
[9] Les applications monomiales en deux dimensions, Mich. Math. J., Volume 51 (2003) no. 3, pp. 467-475 | MR | Zbl
[10] Holomorphic self-maps of singular rational surfaces, Publ. Mat., Barc., Volume 54 (2010) no. 2, pp. 389-432 | DOI | MR | Zbl
[11] The valuative tree, Lecture Notes in Mathematics, 1853, Springer, 2004, xiv+234 pages | DOI | MR | Zbl
[12] Dynamical compactifications of , Ann. Math. (2), Volume 173 (2011) no. 1, pp. 211-249 | DOI | Zbl
[13] Complex dynamics in higher dimensions, Complex potential theory (Montreal, PQ, 1993) (NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci.), Volume 439, Kluwer Academic Publishers, 1994, pp. 131-186 | DOI | MR | Zbl
[14] Growth of attraction rates for iterates of a superattracting germ in dimension two, Indiana Univ. Math. J., Volume 63 (2014) no. 4, pp. 1195-1234 | DOI | MR | Zbl
[15] Local dynamics of non-invertible maps near normal surface singularities, Mem. Am. Math. Soc., Volume 272 (2021) no. 1337, p. xi+100 | DOI | MR | Zbl
[16] Do integrable mappings have the Painlevé property?, Phys. Rev. Lett., Volume 67 (1991), pp. 1825-1828 | DOI | MR | Zbl
[17] Algebraic Geometry, Springer, 1977 | DOI | MR | Zbl
[18] Superattractive fixed points in , Indiana Univ. Math. J., Volume 43 (1994) no. 1, pp. 321-365 | DOI | MR | Zbl
[19] Dynamics of Berkovich spaces in low dimensions, Berkovich spaces and applications (Lecture Notes in Mathematics), Volume 2119, Springer, 2015, pp. 205-366 | DOI | MR | Zbl
[20] Stabilization of monomial maps, Mich. Math. J., Volume 60 (2011) no. 3, pp. 629-660 | DOI | MR | Zbl
[21] Algebraic stability and degree growth of monomial maps, Math. Z., Volume 271 (2012) no. 1-2, pp. 293-311 | DOI | MR | Zbl
[22] Actions of Cremona groups on CAT(0) cube complexes (2021) (to appear in Duke Math. J.) | arXiv
Cité par Sources :