Stability of finite difference schemes for the hyperbolic initial boundary value problem by winding number computations
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 1, pp. 193-224.

In this paper, we present a numerical strategy to check the strong stability (or GKS-stability) of one-step explicit finite difference schemes for the one-dimensional advection equation with an inflow boundary condition. The strong stability is studied using the Kreiss–Lopatinskii theory. We introduce a new tool, the intrinsic Kreiss–Lopatinskii determinant, which possesses the same regularity as the vector bundle of discrete stable solutions. By applying standard results of complex analysis to this determinant, we are able to relate the strong stability of numerical schemes to the computation of a winding number, which is robust and cheap. The study is illustrated with the O3 scheme and the fifth-order Lax–Wendroff (LW5) scheme together with a reconstruction procedure at the boundary.

Dans cet article, nous présentons une stratégie numérique permettant de vérifier la stabilité forte (ou stabilité GKS) des schémas de différences finies explicites à un pas pour l’équation d’advection unidimensionnelle avec une condition de bord entrante. La stabilité forte est étudiée à l’aide de la théorie de Kreiss–Lopatinskii. Nous introduisons un nouvel outil, le déterminant intrinsèque de Kreiss–Lopatinskii, qui possède la même régularité que le fibré vectoriel des solutions stables. En lui appliquant les résultats usuels de l’analyse complexe, nous sommes en mesure de ramener l’étude de la stabilité forte au calcul d’indice d’un lacet, procédure fiable et peu coûteuse. L’étude est illustrée avec les schémas O3 et de Lax–Wendroff d’ordre cinq (LW5) avec une condition de bord obtenue par reconstruction.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1809
Classification : 65M12, 65M06, 30E10
Keywords: IBVP, Kreiss–Lopatinskii determinant, GKS-stability, finite difference methods, winding number

Benjamin Boutin 1 ; Pierre Le Barbenchon 1 ; Nicolas Seguin 2

1 Univ Rennes, CNRS, IRMAR - UMR 6625, 35000 Rennes, France
2 Antenne Inria de l’Université de Montpellier, IMAG, CNRS, université de Montpellier, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2025_6_34_1_193_0,
     author = {Benjamin Boutin and Pierre Le Barbenchon and Nicolas Seguin},
     title = {Stability of finite difference schemes for the hyperbolic initial boundary value problem by winding number computations},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {193--224},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 34},
     number = {1},
     year = {2025},
     doi = {10.5802/afst.1809},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1809/}
}
TY  - JOUR
AU  - Benjamin Boutin
AU  - Pierre Le Barbenchon
AU  - Nicolas Seguin
TI  - Stability of finite difference schemes for the hyperbolic initial boundary value problem by winding number computations
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2025
SP  - 193
EP  - 224
VL  - 34
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1809/
DO  - 10.5802/afst.1809
LA  - en
ID  - AFST_2025_6_34_1_193_0
ER  - 
%0 Journal Article
%A Benjamin Boutin
%A Pierre Le Barbenchon
%A Nicolas Seguin
%T Stability of finite difference schemes for the hyperbolic initial boundary value problem by winding number computations
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2025
%P 193-224
%V 34
%N 1
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1809/
%R 10.5802/afst.1809
%G en
%F AFST_2025_6_34_1_193_0
Benjamin Boutin; Pierre Le Barbenchon; Nicolas Seguin. Stability of finite difference schemes for the hyperbolic initial boundary value problem by winding number computations. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 1, pp. 193-224. doi : 10.5802/afst.1809. https://afst.centre-mersenne.org/articles/10.5802/afst.1809/

[1] Anton Arnold; Matthias Ehrhardt; Ivan Sofronov Discrete transparent boundary conditions for the Schrödinger equation: fast calculation, approximation, and stability, Commun. Math. Sci., Volume 1 (2003) no. 3, pp. 501-556 | DOI | MR | Zbl

[2] Richard M. Beam; Robert F. Warming The asymptotic spectra of banded Toeplitz and quasi-Toeplitz matrices, SIAM J. Sci. Comput., Volume 14 (1993) no. 4, pp. 971-1006 | DOI | MR | Zbl

[3] Antoine Benoit Stability of finite difference schemes approximation for hyperbolic boundary value problems in an interval, Math. Comput., Volume 91 (2022) no. 335, pp. 1171-1212 | DOI | MR | Zbl

[4] Sylvie Benzoni-Gavage; Denis Serre Multidimensional hyperbolic partial differential equations: first-order systems and applications, Oxford Mathematical Monographs, Clarendon Press, 2007 | MR | Zbl

[5] Benjamin Boutin; Pierre Le Barbenchon; Nicolas Seguin On the stability of totally upwind schemes for the hyperbolic initial boundary value problem, IMA J. Numer. Anal., Volume 44 (2024) no. 2, pp. 1211-1241 | DOI | Zbl

[6] Benjamin Boutin; Thi H. T. Nguyen; Alpha Sylla; Sébastien Tran-Tien; Jean-François Coulombel High order numerical schemes for transport equations on bounded domains, ESAIM: ProcS, Volume 70 (2021), pp. 84-106 | DOI | Zbl

[7] Jean-François Coulombel Stability of finite difference schemes for hyperbolic initial boundary value problems, HCDTE lecture notes. Part I. Nonlinear hyperbolic PDEs, dispersive and transport equations (AIMS Series on Applied Mathematics), Volume 6, American Institute of Mathematical Sciences, 2013, pp. 98-225

[8] Jean-François Coulombel Transparent numerical boundary conditions for evolution equations: Derivation and stability analysis, Ann. Fac. Sci. Toulouse, Math., Volume 28 (2019) no. 2, pp. 259-327 | DOI | Numdam | MR | Zbl

[9] Richard Courant; Kurt Friedrichs; Hans Lewy Über die partiellen differenzengleichungen der mathematischen physik, Math. Ann., Volume 100 (1928) no. 1, pp. 32-74 | DOI | MR | Zbl

[10] John Crank; Phyllis Nicolson A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type, Proc. Camb. Philos. Soc., Volume 43 (1947), pp. 50-67 | DOI | MR | Zbl

[11] Gautier Dakin; Bruno Després; Stéphane Jaouen Inverse Lax–Wendroff boundary treatment for compressible lagrange-remap hydrodynamics on cartesian grids, J. Comput. Phys., Volume 353 (2018), pp. 228-257 | DOI | MR | Zbl

[12] Stéphane Del Pino; Hervé Jourdren Arbitrary high-order schemes for the linear advection and wave equations: application to hydrodynamics and aeroacoustics, C. R. Math., Volume 342 (2006) no. 6, pp. 441-446 | DOI | Numdam | Zbl

[13] Matthias Ehrhardt Absorbing boundary conditions for hyperbolic systems, Numer. Math., Theory Methods Appl., Volume 3 (2010) no. 3, pp. 295-337 | DOI | MR | Zbl

[14] Bjorn Engquist; Andrew Majda Absorbing boundary conditions for the numerical simulation of waves, Math. Comput., Volume 31 (1977) no. 139, pp. 629-651 | DOI | MR | Zbl

[15] Juan-Luis García Zapata; Juan Carlos Díaz Martín A geometric algorithm for winding number computation with complexity analysis, J. Complexity, Volume 28 (2012) no. 3, pp. 320-345 | DOI | MR | Zbl

[16] Juan-Luis García Zapata; Juan Carlos Díaz Martín Finding the number of roots of a polynomial in a plane region using the winding number, Comput. Math. Appl., Volume 67 (2014) no. 3, pp. 555-568 | DOI | MR | Zbl

[17] Claude Gasquet; Patrick Witomski Fourier analysis and applications. Filtering, numerical computation, wavelets. Transl. from the French by R. Ryan, Texts in Applied Mathematics, 30, Springer, 1999 | MR | Zbl

[18] Moshe Goldberg On a boundary extrapolation theorem by Kreiss, Math. Comput., Volume 31 (1977) no. 138, pp. 469-477 | MR | Zbl

[19] Moshe Goldberg; Eitan Tadmor Scheme-independent stability criteria for difference approximations of hyperbolic initial-boundary value problems. I, Math. Comput., Volume 32 (1978) no. 144, pp. 1097-1107 | DOI | Zbl

[20] Moshe Goldberg; Eitan Tadmor Scheme-independent stability criteria for difference approximations of hyperbolic initial-boundary value problems. II, Math. Comput., Volume 36 (1981) no. 154, pp. 603-626 | DOI | MR | Zbl

[21] Bertil Gustafsson High Order Difference Methods for Time Dependent PDE, Springer Series in Computational Mathematics, 38, Springer, 2008 | MR | Zbl

[22] Bertil Gustafsson; Heinz-Otto Kreiss; Joseph Oliger Time-dependent problems and difference methods, Pure and Applied Mathematics, John Wiley & Sons, 2013 | DOI | MR | Zbl

[23] Bertil Gustafsson; Heinz-Otto Kreiss; Arne Sundström Stability theory of difference approximations for mixed initial boundary value problems. II, Math. Comput., Volume 26 (1972) no. 119, pp. 649-686 | DOI | MR | Zbl

[24] Charles R. Harris; K. Jarrod Millman; Stéfan J. van der Walt; Ralf Gommers; Pauli Virtanen; David Cournapeau; Eric Wieser; Julian Taylor; Sebastian Berg; Nathaniel J. Smith; Robert Kern; Matti Picus; Stephan Hoyer; Marten H. van Kerkwijk; Matthew Brett; Allan Haldane; Jaime Fernández del Río; Mark Wiebe; Pearu Peterson; Pierre Gérard-Marchant; Kevin Sheppard; Tyler Reddy; Warren Weckesser; Hameer Abbasi; Christoph Gohlke; Travis E. Oliphant Array programming with NumPy, Nature, Volume 585 (2020) no. 7825, pp. 357-362 | DOI

[25] M. Ch. Hermite; M. Borchardt Sur la formule d’interpolation de Lagrange, J. Reine Angew. Math., Volume 84 (1878), pp. 70-79 | DOI | MR

[26] Reuben Hersh Mixed problems in several variables, J. Math. Mech., Volume 12 (1963), pp. 317-334 | MR | Zbl

[27] Arieh Iserles; Gilbert Strang The optimal accuracy of difference schemes, Trans. Am. Math. Soc., Volume 277 (1983) no. 2, pp. 779-803 | DOI | MR | Zbl

[28] Heinz-Otto Kreiss Stability theory for difference approximations of mixed initial boundary value problems. I, Math. Comput., Volume 22 (1968), pp. 703-714 | MR | Zbl

[29] Serge Lang Complex analysis, Graduate Texts in Mathematics, 103, Springer, 1999 | DOI | Zbl

[30] Peter D. Lax; Robert D. Richtmyer Survey of the stability of linear finite difference equations, Commun. Pure Appl. Math., Volume 9 (1956) no. 2, pp. 267-293 | DOI | Zbl

[31] Pierre Le Barbenchon Boundaryscheme: package Python for numerical schemes with boundaries, 2023 (https://zenodo.org/doi/10.5281/zenodo.7773741)

[32] Pierre Le Barbenchon Étude théorique et numérique de la stabilité GKS pour des schémas d’ordre élevé en présence de bords, Ph. D. Thesis, Université de Rennes (2023) (https://theses.hal.science/tel-04214887)

[33] Tingting Li; Jianfang Lu; Chi-Wang Shu Stability analysis of inverse Lax–Wendroff boundary treatment of high order compact difference schemes for parabolic equations, J. Comput. Appl. Math., Volume 400 (2022), 113711, 26 pages | DOI | MR | Zbl

[34] Tingting Li; Chi-Wang Shu; Mengping Zhang Stability analysis of the inverse Lax–Wendroff boundary treatment for high order upwind-biased finite difference schemes, J. Comput. Appl. Math., Volume 299 (2016), pp. 140-158 | MR | Zbl

[35] Tingting Li; Chi-Wang Shu; Mengping Zhang Stability analysis of the inverse Lax–Wendroff boundary treatment for high order central difference schemes for diffusion equations, J. Sci. Comput., Volume 70 (2017) no. 2, pp. 576-607 | MR | Zbl

[36] Frieder Lörcher; Claus-Dieter Munz Lax–Wendroff-type schemes of arbitrary order in several space dimensions, IMA J. Numer. Anal., Volume 27 (2006) no. 3, pp. 593-615 | DOI | MR | Zbl

[37] Guy Métivier; Kevin Zumbrun Symmetrizers and continuity of stable subspaces for parabolic-hyperbolic boundary value problems, Discrete Contin. Dyn. Syst., Volume 11 (2004) no. 1, pp. 205-220 | DOI | MR | Zbl

[38] Aaron Meurer; Christopher P. Smith; Mateusz Paprocki; Ondřej Čertík; Sergey B. Kirpichev; Matthew Rocklin; AMiT Kumar; Sergiu Ivanov; Jason K. Moore; Sartaj Singh; Thilina Rathnayake; Sean Vig; Brian E. Granger; Richard P. Muller; Francesco Bonazzi; Harsh Gupta; Shivam Vats; Fredrik Johansson; Fabian Pedregosa; Matthew J. Curry; Andy R. Terrel; Stěpán Roučka; Ashutosh Saboo; Isuru Fernando; Sumith Kulal; Robert Cimrman; Anthony Scopatz SymPy: symbolic computing in Python, PeerJ Comput. Sci., Volume 3 (2017), e103 | DOI

[39] Michael Thuné Automatic GKS stability analysis, SIAM J. Sci. Stat. Comput., Volume 7 (1986) no. 3, pp. 959-977 | DOI | MR | Zbl

[40] François Vilar; Chi-Wang Shu Development and stability analysis of the inverse Lax-Wendroff boundary treatment for central compact schemes, ESAIM, Math. Model. Numer. Anal., Volume 49 (2015) no. 1, pp. 39-67 | Numdam | MR | Zbl

[41] Lixin Wu The semigroup stability of the difference approximations for initial-boundary value problems, Math. Comput., Volume 64 (1995) no. 209, pp. 71-88 | MR | Zbl

Cité par Sources :