In this paper, we present a numerical strategy to check the strong stability (or GKS-stability) of one-step explicit finite difference schemes for the one-dimensional advection equation with an inflow boundary condition. The strong stability is studied using the Kreiss–Lopatinskii theory. We introduce a new tool, the intrinsic Kreiss–Lopatinskii determinant, which possesses the same regularity as the vector bundle of discrete stable solutions. By applying standard results of complex analysis to this determinant, we are able to relate the strong stability of numerical schemes to the computation of a winding number, which is robust and cheap. The study is illustrated with the O3 scheme and the fifth-order Lax–Wendroff (LW5) scheme together with a reconstruction procedure at the boundary.
Dans cet article, nous présentons une stratégie numérique permettant de vérifier la stabilité forte (ou stabilité GKS) des schémas de différences finies explicites à un pas pour l’équation d’advection unidimensionnelle avec une condition de bord entrante. La stabilité forte est étudiée à l’aide de la théorie de Kreiss–Lopatinskii. Nous introduisons un nouvel outil, le déterminant intrinsèque de Kreiss–Lopatinskii, qui possède la même régularité que le fibré vectoriel des solutions stables. En lui appliquant les résultats usuels de l’analyse complexe, nous sommes en mesure de ramener l’étude de la stabilité forte au calcul d’indice d’un lacet, procédure fiable et peu coûteuse. L’étude est illustrée avec les schémas O3 et de Lax–Wendroff d’ordre cinq (LW5) avec une condition de bord obtenue par reconstruction.
Accepté le :
Publié le :
Keywords: IBVP, Kreiss–Lopatinskii determinant, GKS-stability, finite difference methods, winding number
Benjamin Boutin 1 ; Pierre Le Barbenchon 1 ; Nicolas Seguin 2

@article{AFST_2025_6_34_1_193_0, author = {Benjamin Boutin and Pierre Le Barbenchon and Nicolas Seguin}, title = {Stability of finite difference schemes for the hyperbolic initial boundary value problem by winding number computations}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {193--224}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 34}, number = {1}, year = {2025}, doi = {10.5802/afst.1809}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1809/} }
TY - JOUR AU - Benjamin Boutin AU - Pierre Le Barbenchon AU - Nicolas Seguin TI - Stability of finite difference schemes for the hyperbolic initial boundary value problem by winding number computations JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2025 SP - 193 EP - 224 VL - 34 IS - 1 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1809/ DO - 10.5802/afst.1809 LA - en ID - AFST_2025_6_34_1_193_0 ER -
%0 Journal Article %A Benjamin Boutin %A Pierre Le Barbenchon %A Nicolas Seguin %T Stability of finite difference schemes for the hyperbolic initial boundary value problem by winding number computations %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2025 %P 193-224 %V 34 %N 1 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1809/ %R 10.5802/afst.1809 %G en %F AFST_2025_6_34_1_193_0
Benjamin Boutin; Pierre Le Barbenchon; Nicolas Seguin. Stability of finite difference schemes for the hyperbolic initial boundary value problem by winding number computations. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 1, pp. 193-224. doi : 10.5802/afst.1809. https://afst.centre-mersenne.org/articles/10.5802/afst.1809/
[1] Discrete transparent boundary conditions for the Schrödinger equation: fast calculation, approximation, and stability, Commun. Math. Sci., Volume 1 (2003) no. 3, pp. 501-556 | DOI | MR | Zbl
[2] The asymptotic spectra of banded Toeplitz and quasi-Toeplitz matrices, SIAM J. Sci. Comput., Volume 14 (1993) no. 4, pp. 971-1006 | DOI | MR | Zbl
[3] Stability of finite difference schemes approximation for hyperbolic boundary value problems in an interval, Math. Comput., Volume 91 (2022) no. 335, pp. 1171-1212 | DOI | MR | Zbl
[4] Multidimensional hyperbolic partial differential equations: first-order systems and applications, Oxford Mathematical Monographs, Clarendon Press, 2007 | MR | Zbl
[5] On the stability of totally upwind schemes for the hyperbolic initial boundary value problem, IMA J. Numer. Anal., Volume 44 (2024) no. 2, pp. 1211-1241 | DOI | Zbl
[6] High order numerical schemes for transport equations on bounded domains, ESAIM: ProcS, Volume 70 (2021), pp. 84-106 | DOI | Zbl
[7] Stability of finite difference schemes for hyperbolic initial boundary value problems, HCDTE lecture notes. Part I. Nonlinear hyperbolic PDEs, dispersive and transport equations (AIMS Series on Applied Mathematics), Volume 6, American Institute of Mathematical Sciences, 2013, pp. 98-225
[8] Transparent numerical boundary conditions for evolution equations: Derivation and stability analysis, Ann. Fac. Sci. Toulouse, Math., Volume 28 (2019) no. 2, pp. 259-327 | DOI | Numdam | MR | Zbl
[9] Über die partiellen differenzengleichungen der mathematischen physik, Math. Ann., Volume 100 (1928) no. 1, pp. 32-74 | DOI | MR | Zbl
[10] A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type, Proc. Camb. Philos. Soc., Volume 43 (1947), pp. 50-67 | DOI | MR | Zbl
[11] Inverse Lax–Wendroff boundary treatment for compressible lagrange-remap hydrodynamics on cartesian grids, J. Comput. Phys., Volume 353 (2018), pp. 228-257 | DOI | MR | Zbl
[12] Arbitrary high-order schemes for the linear advection and wave equations: application to hydrodynamics and aeroacoustics, C. R. Math., Volume 342 (2006) no. 6, pp. 441-446 | DOI | Numdam | Zbl
[13] Absorbing boundary conditions for hyperbolic systems, Numer. Math., Theory Methods Appl., Volume 3 (2010) no. 3, pp. 295-337 | DOI | MR | Zbl
[14] Absorbing boundary conditions for the numerical simulation of waves, Math. Comput., Volume 31 (1977) no. 139, pp. 629-651 | DOI | MR | Zbl
[15] A geometric algorithm for winding number computation with complexity analysis, J. Complexity, Volume 28 (2012) no. 3, pp. 320-345 | DOI | MR | Zbl
[16] Finding the number of roots of a polynomial in a plane region using the winding number, Comput. Math. Appl., Volume 67 (2014) no. 3, pp. 555-568 | DOI | MR | Zbl
[17] Fourier analysis and applications. Filtering, numerical computation, wavelets. Transl. from the French by R. Ryan, Texts in Applied Mathematics, 30, Springer, 1999 | MR | Zbl
[18] On a boundary extrapolation theorem by Kreiss, Math. Comput., Volume 31 (1977) no. 138, pp. 469-477 | MR | Zbl
[19] Scheme-independent stability criteria for difference approximations of hyperbolic initial-boundary value problems. I, Math. Comput., Volume 32 (1978) no. 144, pp. 1097-1107 | DOI | Zbl
[20] Scheme-independent stability criteria for difference approximations of hyperbolic initial-boundary value problems. II, Math. Comput., Volume 36 (1981) no. 154, pp. 603-626 | DOI | MR | Zbl
[21] High Order Difference Methods for Time Dependent PDE, Springer Series in Computational Mathematics, 38, Springer, 2008 | MR | Zbl
[22] Time-dependent problems and difference methods, Pure and Applied Mathematics, John Wiley & Sons, 2013 | DOI | MR | Zbl
[23] Stability theory of difference approximations for mixed initial boundary value problems. II, Math. Comput., Volume 26 (1972) no. 119, pp. 649-686 | DOI | MR | Zbl
[24] Array programming with NumPy, Nature, Volume 585 (2020) no. 7825, pp. 357-362 | DOI
[25] Sur la formule d’interpolation de Lagrange, J. Reine Angew. Math., Volume 84 (1878), pp. 70-79 | DOI | MR
[26] Mixed problems in several variables, J. Math. Mech., Volume 12 (1963), pp. 317-334 | MR | Zbl
[27] The optimal accuracy of difference schemes, Trans. Am. Math. Soc., Volume 277 (1983) no. 2, pp. 779-803 | DOI | MR | Zbl
[28] Stability theory for difference approximations of mixed initial boundary value problems. I, Math. Comput., Volume 22 (1968), pp. 703-714 | MR | Zbl
[29] Complex analysis, Graduate Texts in Mathematics, 103, Springer, 1999 | DOI | Zbl
[30] Survey of the stability of linear finite difference equations, Commun. Pure Appl. Math., Volume 9 (1956) no. 2, pp. 267-293 | DOI | Zbl
[31] Boundaryscheme: package Python for numerical schemes with boundaries, 2023 (https://zenodo.org/doi/10.5281/zenodo.7773741)
[32] Étude théorique et numérique de la stabilité GKS pour des schémas d’ordre élevé en présence de bords, Ph. D. Thesis, Université de Rennes (2023) (https://theses.hal.science/tel-04214887)
[33] Stability analysis of inverse Lax–Wendroff boundary treatment of high order compact difference schemes for parabolic equations, J. Comput. Appl. Math., Volume 400 (2022), 113711, 26 pages | DOI | MR | Zbl
[34] Stability analysis of the inverse Lax–Wendroff boundary treatment for high order upwind-biased finite difference schemes, J. Comput. Appl. Math., Volume 299 (2016), pp. 140-158 | MR | Zbl
[35] Stability analysis of the inverse Lax–Wendroff boundary treatment for high order central difference schemes for diffusion equations, J. Sci. Comput., Volume 70 (2017) no. 2, pp. 576-607 | MR | Zbl
[36] Lax–Wendroff-type schemes of arbitrary order in several space dimensions, IMA J. Numer. Anal., Volume 27 (2006) no. 3, pp. 593-615 | DOI | MR | Zbl
[37] Symmetrizers and continuity of stable subspaces for parabolic-hyperbolic boundary value problems, Discrete Contin. Dyn. Syst., Volume 11 (2004) no. 1, pp. 205-220 | DOI | MR | Zbl
[38] SymPy: symbolic computing in Python, PeerJ Comput. Sci., Volume 3 (2017), e103 | DOI
[39] Automatic GKS stability analysis, SIAM J. Sci. Stat. Comput., Volume 7 (1986) no. 3, pp. 959-977 | DOI | MR | Zbl
[40] Development and stability analysis of the inverse Lax-Wendroff boundary treatment for central compact schemes, ESAIM, Math. Model. Numer. Anal., Volume 49 (2015) no. 1, pp. 39-67 | Numdam | MR | Zbl
[41] The semigroup stability of the difference approximations for initial-boundary value problems, Math. Comput., Volume 64 (1995) no. 209, pp. 71-88 | MR | Zbl
Cité par Sources :