Cyclicity in Besov–Dirichlet spaces from the Corona Theorem
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 3, pp. 731-742.

Tolokonnikov’s Corona Theorem is used to obtain two results on cyclicity in Besov–Dirichlet spaces.

Nous utilisons le Théorème de la couronne de Tolokonnikov pour obtenir deux résultats sur la cyclicité dans les espaces de Besov–Dirichlet.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1822
Classification : 43A15, 28A12, 42A38
Keywords: Outer function, Corona Theorem, Cyclicity, Besov–Dirichlet spaces

Yabreb Egueh 1 ; Karim Kellay 1 ; Mohamed Zarrabi 1

1 Univ. Bordeaux & CNRS, IMB, UMR 5251 F-33400 Talence, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2025_6_34_3_731_0,
     author = {Yabreb Egueh and Karim Kellay and Mohamed Zarrabi},
     title = {Cyclicity in {Besov{\textendash}Dirichlet} spaces from the {Corona} {Theorem}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {731--742},
     publisher = {Universit\'e de Toulouse, Toulouse},
     volume = {Ser. 6, 34},
     number = {3},
     year = {2025},
     doi = {10.5802/afst.1822},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1822/}
}
TY  - JOUR
AU  - Yabreb Egueh
AU  - Karim Kellay
AU  - Mohamed Zarrabi
TI  - Cyclicity in Besov–Dirichlet spaces from the Corona Theorem
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2025
SP  - 731
EP  - 742
VL  - 34
IS  - 3
PB  - Université de Toulouse, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1822/
DO  - 10.5802/afst.1822
LA  - en
ID  - AFST_2025_6_34_3_731_0
ER  - 
%0 Journal Article
%A Yabreb Egueh
%A Karim Kellay
%A Mohamed Zarrabi
%T Cyclicity in Besov–Dirichlet spaces from the Corona Theorem
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2025
%P 731-742
%V 34
%N 3
%I Université de Toulouse, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1822/
%R 10.5802/afst.1822
%G en
%F AFST_2025_6_34_3_731_0
Yabreb Egueh; Karim Kellay; Mohamed Zarrabi. Cyclicity in Besov–Dirichlet spaces from the Corona Theorem. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 3, pp. 731-742. doi : 10.5802/afst.1822. https://afst.centre-mersenne.org/articles/10.5802/afst.1822/

[1] Alexandru Aleman Hilbert spaces of analytic functions between the Hardy and the Dirichlet space, Proc. Am. Math. Soc., Volume 115 (1992) no. 1, pp. 97-104 | DOI | MR | Zbl

[2] E. Amar; P. J. Thomas Cyclicity of nonvanishing functions in the polydisk and in the ball, St. Petersbg. Math. J., Volume 31 (2020) no. 5, pp. 751-768 | DOI | Zbl

[3] Nicola Arcozzi; Richard Rochberg; Eric T. Sawyer; Brett D. Wick The Dirichlet space and related function spaces, Mathematical Surveys and Monographs, 239, American Mathematical Society, 2019, xix+536 pages | DOI | MR | Zbl

[4] Aharon Atzmon Operators which are annihilated by analytic functions and invariant subspaces, Acta Math., Volume 144 (1980) no. 1-2, pp. 27-63 | DOI | MR | Zbl

[5] Hafid Bahajji-El Idrissi; Hamza El Azhar Analytic Besov spaces, approximation, and closed ideals, Can. Math. Bull., Volume 66 (2023) no. 1, pp. 259-268 | DOI | MR | Zbl

[6] Arne Beurling On two problems concerning linear transformations in Hilbert space, Acta Math., Uppsala, Volume 81 (1949), pp. 239-255 | DOI | MR | Zbl

[7] Abdellatif Bourhim; Omar El-Fallah; Karim Kellay Boundary behaviour of functions of Nevanlinna class, Indiana Univ. Math. J., Volume 53 (2004) no. 2, pp. 347-395 | DOI | MR | Zbl

[8] Brahim Bouya; Omar El-Fallah; Karim Kellay Idéaux fermés d’algèbres de Beurling analytiques sur le bidisque, Bull. Sci. Math., Volume 134 (2010) no. 6, pp. 588-604 | DOI | MR | Zbl

[9] Leon Brown; Allen L. Shields Cyclic vectors in the Dirichlet space, Trans. Am. Math. Soc., Volume 285 (1984), pp. 269-304 | DOI | MR | Zbl

[10] Joaquim Bruna On the peak sets for holomorphic Lipschitz functions, Indiana Univ. Math. J., Volume 32 (1983) no. 2, pp. 257-272 | DOI | MR | Zbl

[11] Lennart Carleson Sets of uniqueness for functions regular in the unit circle, Acta Math., Volume 87 (1952), pp. 325-345 | DOI | MR | Zbl

[12] Lennart Carleson Interpolations by bounded analytic functions and the corona problem, Ann. Math., Volume 76 (1962), pp. 547-559 | DOI | Zbl

[13] Şerban Costea; Eric T. Sawyer; Brett D. Wick The Corona Theorem for the Drury–Arveson Hardy space and other holomorphic Besov–Sobolev spaces on the unit ball in n , Anal. PDE, Volume 4 (2011) no. 4, pp. 499-550 | DOI | MR | Zbl

[14] Evsey M. Dyn’kin Free interpolation sets for Hölder classes, Mat. Sb., N. Ser., Volume 109 (1979), pp. 107-128 | MR

[15] Omar El-Fallah; Karim Kellay; Javad Mashreghi; Thomas Ransford A primer on the Dirichlet space, Cambridge Tracts in Mathematics, 203, Cambridge University Press, 2014, xii+211 pages | DOI | MR | Zbl

[16] Omar El-Fallah; Karim Kellay; Thomas Ransford On the Brown-Shields conjecture for cyclicity in the Dirichlet space, Adv. Math., Volume 222 (2009) no. 6, pp. 2196-2214 | DOI | MR | Zbl

[17] Omar El-Fallah; Karim Kellay; Thomas Ransford Cantor sets and cyclicity in weighted Dirichlet spaces, J. Math. Anal. Appl., Volume 372 (2010) no. 2, pp. 565-573 | DOI | MR | Zbl

[18] Omar El-Fallah; Karim Kellay; Thomas Ransford Invariant subspaces of the Dirichlet space, Hilbert spaces of analytic functions (CRM Proceedings & Lecture Notes), Volume 51, American Mathematical Society, 2010, pp. 133-141 | DOI | Zbl

[19] Omar El-Fallah; Karim Kellay; Kristian Seip Cyclicity of singular inner functions from the Corona Theorem, J. Inst. Math. Jussieu, Volume 22 (2012) no. 4, pp. 815-824 | DOI | MR | Zbl

[20] Håkan Hedenmalm; Allen L. Shields Invariant subspaces in Banach spaces of analytic functions, Mich. Math. J., Volume 37 (1990) no. 1, pp. 91-104 | MR | Zbl

[21] Hafid Bahajji-El Idrissi; Omar El-Fallah Approximation in spaces of analytic functions, Stud. Math., Volume 255 (2020) no. 2, pp. 209-217 | DOI | MR | Zbl

[22] Karim Kellay; Florian Le Manach; Mohamed Zarrabi Cyclicity in Dirichlet type spaces, Complex analysis and spectral theory (Contemporary Mathematics), Volume 743, American Mathematical Society, 2020, pp. 181-193 | DOI | Zbl

[23] Artur Nicolau The corona property for bounded analytic functions in some Besov spaces, Proc. Am. Math. Soc., Volume 110 (1990) no. 1, pp. 135-140 | DOI | MR | Zbl

[24] Stefan Richter; Carl Sundberg A formula for the local Dirichlet integral, Mich. Math. J., Volume 38 (1991) no. 3, pp. 355-379 | MR | Zbl

[25] Stefan Richter; Carl Sundberg Invariant subspaces of the Dirichlet shift and pseudocontinuations, Trans. Am. Math. Soc., Volume 341 (1994) no. 2, pp. 863-879 | DOI | MR | Zbl

[26] James W. Roberts Cyclic inner functions in the Bergman spaces and weak outer functions in H p , 0<p<1, Ill. J. Math., Volume 29 (1985), pp. 25-38 | MR | Zbl

[27] Joel H. Shapiro; Allen L. Shields Unusual topological properties of the Nevanlinna class, Am. J. Math., Volume 97 (1975) no. 4, pp. 915-936 | DOI | MR | Zbl

[28] Vadim A. Tolokonnikov The Corona Theorem in algebras of bounded analytic functions, Transl., Ser. 2, Am. Math. Soc., Volume 149 (1991), pp. 61-93 | Zbl

Cité par Sources :