Tolokonnikov’s Corona Theorem is used to obtain two results on cyclicity in Besov–Dirichlet spaces.
Nous utilisons le Théorème de la couronne de Tolokonnikov pour obtenir deux résultats sur la cyclicité dans les espaces de Besov–Dirichlet.
Accepté le :
Publié le :
Keywords: Outer function, Corona Theorem, Cyclicity, Besov–Dirichlet spaces
Yabreb Egueh 1 ; Karim Kellay 1 ; Mohamed Zarrabi 1

@article{AFST_2025_6_34_3_731_0, author = {Yabreb Egueh and Karim Kellay and Mohamed Zarrabi}, title = {Cyclicity in {Besov{\textendash}Dirichlet} spaces from the {Corona} {Theorem}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {731--742}, publisher = {Universit\'e de Toulouse, Toulouse}, volume = {Ser. 6, 34}, number = {3}, year = {2025}, doi = {10.5802/afst.1822}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1822/} }
TY - JOUR AU - Yabreb Egueh AU - Karim Kellay AU - Mohamed Zarrabi TI - Cyclicity in Besov–Dirichlet spaces from the Corona Theorem JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2025 SP - 731 EP - 742 VL - 34 IS - 3 PB - Université de Toulouse, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1822/ DO - 10.5802/afst.1822 LA - en ID - AFST_2025_6_34_3_731_0 ER -
%0 Journal Article %A Yabreb Egueh %A Karim Kellay %A Mohamed Zarrabi %T Cyclicity in Besov–Dirichlet spaces from the Corona Theorem %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2025 %P 731-742 %V 34 %N 3 %I Université de Toulouse, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1822/ %R 10.5802/afst.1822 %G en %F AFST_2025_6_34_3_731_0
Yabreb Egueh; Karim Kellay; Mohamed Zarrabi. Cyclicity in Besov–Dirichlet spaces from the Corona Theorem. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 3, pp. 731-742. doi : 10.5802/afst.1822. https://afst.centre-mersenne.org/articles/10.5802/afst.1822/
[1] Hilbert spaces of analytic functions between the Hardy and the Dirichlet space, Proc. Am. Math. Soc., Volume 115 (1992) no. 1, pp. 97-104 | DOI | MR | Zbl
[2] Cyclicity of nonvanishing functions in the polydisk and in the ball, St. Petersbg. Math. J., Volume 31 (2020) no. 5, pp. 751-768 | DOI | Zbl
[3] The Dirichlet space and related function spaces, Mathematical Surveys and Monographs, 239, American Mathematical Society, 2019, xix+536 pages | DOI | MR | Zbl
[4] Operators which are annihilated by analytic functions and invariant subspaces, Acta Math., Volume 144 (1980) no. 1-2, pp. 27-63 | DOI | MR | Zbl
[5] Analytic Besov spaces, approximation, and closed ideals, Can. Math. Bull., Volume 66 (2023) no. 1, pp. 259-268 | DOI | MR | Zbl
[6] On two problems concerning linear transformations in Hilbert space, Acta Math., Uppsala, Volume 81 (1949), pp. 239-255 | DOI | MR | Zbl
[7] Boundary behaviour of functions of Nevanlinna class, Indiana Univ. Math. J., Volume 53 (2004) no. 2, pp. 347-395 | DOI | MR | Zbl
[8] Idéaux fermés d’algèbres de Beurling analytiques sur le bidisque, Bull. Sci. Math., Volume 134 (2010) no. 6, pp. 588-604 | DOI | MR | Zbl
[9] Cyclic vectors in the Dirichlet space, Trans. Am. Math. Soc., Volume 285 (1984), pp. 269-304 | DOI | MR | Zbl
[10] On the peak sets for holomorphic Lipschitz functions, Indiana Univ. Math. J., Volume 32 (1983) no. 2, pp. 257-272 | DOI | MR | Zbl
[11] Sets of uniqueness for functions regular in the unit circle, Acta Math., Volume 87 (1952), pp. 325-345 | DOI | MR | Zbl
[12] Interpolations by bounded analytic functions and the corona problem, Ann. Math., Volume 76 (1962), pp. 547-559 | DOI | Zbl
[13] The Corona Theorem for the Drury–Arveson Hardy space and other holomorphic Besov–Sobolev spaces on the unit ball in , Anal. PDE, Volume 4 (2011) no. 4, pp. 499-550 | DOI | MR | Zbl
[14] Free interpolation sets for Hölder classes, Mat. Sb., N. Ser., Volume 109 (1979), pp. 107-128 | MR
[15] A primer on the Dirichlet space, Cambridge Tracts in Mathematics, 203, Cambridge University Press, 2014, xii+211 pages | DOI | MR | Zbl
[16] On the Brown-Shields conjecture for cyclicity in the Dirichlet space, Adv. Math., Volume 222 (2009) no. 6, pp. 2196-2214 | DOI | MR | Zbl
[17] Cantor sets and cyclicity in weighted Dirichlet spaces, J. Math. Anal. Appl., Volume 372 (2010) no. 2, pp. 565-573 | DOI | MR | Zbl
[18] Invariant subspaces of the Dirichlet space, Hilbert spaces of analytic functions (CRM Proceedings & Lecture Notes), Volume 51, American Mathematical Society, 2010, pp. 133-141 | DOI | Zbl
[19] Cyclicity of singular inner functions from the Corona Theorem, J. Inst. Math. Jussieu, Volume 22 (2012) no. 4, pp. 815-824 | DOI | MR | Zbl
[20] Invariant subspaces in Banach spaces of analytic functions, Mich. Math. J., Volume 37 (1990) no. 1, pp. 91-104 | MR | Zbl
[21] Approximation in spaces of analytic functions, Stud. Math., Volume 255 (2020) no. 2, pp. 209-217 | DOI | MR | Zbl
[22] Cyclicity in Dirichlet type spaces, Complex analysis and spectral theory (Contemporary Mathematics), Volume 743, American Mathematical Society, 2020, pp. 181-193 | DOI | Zbl
[23] The corona property for bounded analytic functions in some Besov spaces, Proc. Am. Math. Soc., Volume 110 (1990) no. 1, pp. 135-140 | DOI | MR | Zbl
[24] A formula for the local Dirichlet integral, Mich. Math. J., Volume 38 (1991) no. 3, pp. 355-379 | MR | Zbl
[25] Invariant subspaces of the Dirichlet shift and pseudocontinuations, Trans. Am. Math. Soc., Volume 341 (1994) no. 2, pp. 863-879 | DOI | MR | Zbl
[26] Cyclic inner functions in the Bergman spaces and weak outer functions in , , Ill. J. Math., Volume 29 (1985), pp. 25-38 | MR | Zbl
[27] Unusual topological properties of the Nevanlinna class, Am. J. Math., Volume 97 (1975) no. 4, pp. 915-936 | DOI | MR | Zbl
[28] The Corona Theorem in algebras of bounded analytic functions, Transl., Ser. 2, Am. Math. Soc., Volume 149 (1991), pp. 61-93 | Zbl
Cité par Sources :