We initiate the study of the fundamental group of natural completions of the group of Hamiltonian diffeomorphisms, namely its $C^0$-closure $\overline{\mathrm{Ham}}(M,\omega )$ in the set of all homeomorphisms, and its completion with respect to the spectral norm $\widehat{\mathrm{Ham}}(M,\omega )$. We prove that in some situations, namely complex projective spaces and rational Hirzebruch surfaces, certain Hamiltonian loops that were known to be non-trivial in $\pi _1(\mathrm{Ham}(M,\omega ))$ remain non-trivial in $\pi _1(\widehat{\mathrm{Ham}}(M,\omega ))$. This yields in particular cases, including $\mathbb{C}\mathrm{P}^2$ and the monotone $S^2\times S^2$, the injectivity of the map $\pi _1(\mathrm{Ham}(M,\omega ))\rightarrow \pi _1(\widehat{\mathrm{Ham}}(M,\omega ))$ induced by the inclusion. The same results hold for the Hofer completion of $\mathrm{Ham}(M,\omega )$. Moreover, whenever the spectral norm is known to be $C^0$-continuous, they also hold for $\overline{\mathrm{Ham}}(M,\omega )$.
Our method relies on computations of the valuation of Seidel elements and hence of the spectral norm on $\pi _1(\mathrm{Ham}(M,\omega ))$. Some of these computations were known before, but we also present new ones which might be of independent interest. For example, we show that the spectral pseudo-norm is degenerate when $(M,\omega )$ is any non-monotone $S^{2}\times S^{2}$. At the contrary, it is a genuine norm when $M$ is the 1-point blow-up of $\mathbb{C}\mathrm{P}^{2}$; it is unbounded for small sizes of the blow-up and become bounded starting at the monotone one.
Nous initions l’étude du groupe fondamental de certaines complétions naturelles du groupe des difféomorphismes hamiltoniens. Plus précisément, nous considérons son adhérence $\overline{\mathrm{Ham}}(M,\omega )$ dans le groupe des homéomorphismes pour la topologie $C^0$ et sa complétion pour la norme spectrale $\widehat{\mathrm{Ham}}(M,\omega )$. Nous montrons que dans certaines situations, comme les espaces projectifs complexes ou les surfaces de Hirzebruch rationnelles, certains lacets hamiltoniens connus pour être non-triviaux dans $\pi _1(\mathrm{Ham}(M,\omega ))$ le restent dans $\pi _1(\widehat{\mathrm{Ham}}(M,\omega ))$. Dans des cas particuliers, incluant $\mathbb{C}\mathrm{P}^2$ et le produit $S^2\times S^2$ monotone, ceci implique l’injectivité de l’application $\pi _1(\mathrm{Ham}(M,\omega ))\rightarrow \pi _1(\widehat{\mathrm{Ham}}(M,\omega ))$ induite par l’inclusion. Les mêmes résultats s’appliquent à la complétion de $\mathrm{Ham}(M,\omega )$ pour la norme de Hofer. De plus, ils restent valables pour $\overline{\mathrm{Ham}}(M,\omega )$ dans toute situation où la norme spectrale est $C^0$-continue.
Notre méthode repose sur le calcul des valuations des éléments de Seidel, et donc de la pseudo-norme spectrale sur $\pi _1(\mathrm{Ham}(M,\omega ))$. Certains de ces calculs étaient déjà connus, mais nous en présentons aussi de nouveaux, qui nous semblent intéressants en eux-mêmes. Par exemple, nous montrons que la pseudo-norme spectrale sur $\pi _1(\mathrm{Ham}(M,\omega ))$ est dégénérée lorsque $M$ est n’importe quel produit $S^{2}\times S^{2}$ non-monotone. À l’inverse, c’est une norme lorsque $M$ est l’éclaté en un point de $\mathbb{C}\mathrm{P}^{2}$ ; celle-ci est de plus non-bornée pour les éclatements de petite taille et devient bornée à partir de l’éclatement correspondant au cas monotone.
Accepté le :
Publié le :
Keywords: Hamiltonian diffeomorphisms, spectral norm, Seidel homomorphism
Vincent Humilière 1 ; Alexandre Jannaud 2 ; Rémi Leclercq 3
CC-BY 4.0
@article{AFST_2025_6_34_5_1295_0,
author = {Vincent Humili\`ere and Alexandre Jannaud and R\'emi Leclercq},
title = {Essential loops in completions of {Hamiltonian} groups},
journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
pages = {1295--1323},
year = {2025},
publisher = {Universit\'e de Toulouse, Toulouse},
volume = {Ser. 6, 34},
number = {5},
doi = {10.5802/afst.1833},
language = {en},
url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1833/}
}
TY - JOUR AU - Vincent Humilière AU - Alexandre Jannaud AU - Rémi Leclercq TI - Essential loops in completions of Hamiltonian groups JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2025 SP - 1295 EP - 1323 VL - 34 IS - 5 PB - Université de Toulouse, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1833/ DO - 10.5802/afst.1833 LA - en ID - AFST_2025_6_34_5_1295_0 ER -
%0 Journal Article %A Vincent Humilière %A Alexandre Jannaud %A Rémi Leclercq %T Essential loops in completions of Hamiltonian groups %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2025 %P 1295-1323 %V 34 %N 5 %I Université de Toulouse, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1833/ %R 10.5802/afst.1833 %G en %F AFST_2025_6_34_5_1295_0
Vincent Humilière; Alexandre Jannaud; Rémi Leclercq. Essential loops in completions of Hamiltonian groups. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 5, pp. 1295-1323. doi: 10.5802/afst.1833
[1] Topology of symplectomorphism groups of rational ruled surfaces, J. Am. Math. Soc., Volume 13 (2000) no. 4, pp. 971-1009 | DOI | MR | Zbl
[2] Noncontractible Hamiltonian loops in the kernel of Seidel’s representation, Pac. J. Math., Volume 290 (2017) no. 2, pp. 257-272 | DOI | MR | Zbl
[3] Seidel’s morphism of toric 4-manifolds, J. Symplectic Geom., Volume 16 (2018) no. 1, pp. 1-68 | DOI | MR | Zbl
[4] Higher Dimensional Birkhoff attractors (2024) | arXiv | Zbl
[5] A counterexample to the Arnold conjecture, Invent. Math., Volume 213 (2018) no. 2, pp. 759-809 | DOI | MR | Zbl
[6] The action spectrum and symplectic topology, Math. Ann., Volume 380 (2021) no. 1-2, pp. 293-316 | DOI | MR | Zbl
[7] Calabi quasimorphism and quantum homology, Int. Math. Res. Not., Volume 2003 (2003) no. 30, pp. 1635-1676 | DOI | MR | Zbl
[8] Morse theory for Lagrangian intersections, J. Differ. Geom., Volume 28 (1988) no. 3, pp. 513-547 | DOI | MR | Zbl
[9] The unregularized gradient flow of the symplectic action, Commun. Pure Appl. Math., Volume 41 (1988) no. 6, pp. 775-813 | DOI | MR | Zbl
[10] Symplectic fixed points and holomorphic spheres, Commun. Math. Phys., Volume 120 (1989) no. 4, pp. 575-611 | MR | Zbl | DOI
[11] Witten’s complex and infinite-dimensional Morse theory, J. Differ. Geom., Volume 30 (1989) no. 1, pp. 207-221 | DOI | MR | Zbl
[12] Pseudo holomorphic curves in symplectic manifolds, Invent. Math., Volume 82 (1985) no. 2, pp. 307-347 | DOI | MR | Zbl
[13] On some completions of the space of Hamiltonian maps, Bull. Soc. Math. Fr., Volume 136 (2008) no. 3, pp. 373-404 | DOI | MR | Zbl | Numdam
[14] Dehn–Seidel twist, symplectic topology and barcodes (2021) | arXiv | Zbl
[15] Free subgroup of the symplectic mapping class group (2022) | arXiv | Zbl
[16] Une version feuilletée équivariante du théorème de translation de Brouwer, Publ. Math., Inst. Hautes Étud. Sci., Volume 102 (2005), pp. 1-98 | DOI | MR | Zbl | Numdam
[17] From Brouwer theory to the study of homeomorphisms of surfaces, Proceedings of the international congress of mathematicians (ICM). Vol. III Invited lectures, European Mathematical Society, 2006, pp. 77-98 | MR | Zbl
[18] Periodic orbits of Hamiltonian homeomorphisms of surfaces, Duke Math. J., Volume 133 (2006) no. 1, pp. 125-184 | Zbl | DOI | MR
[19] Geometric variants of the Hofer norm, J. Symplectic Geom., Volume 1 (2002) no. 2, pp. 197-252 | DOI | MR | Zbl
[20] Monodromy in Hamiltonian Floer theory, Comment. Math. Helv., Volume 85 (2010) no. 1, pp. 95-133 | DOI | MR | Zbl
[21] Topological properties of Hamiltonian circle actions, IMRP, Int. Math. Res. Pap., Volume 2006 (2006), 72826, 77 pages | DOI | MR | Zbl
[22] Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds, The breadth of symplectic and Poisson geometry (Progress in Mathematics), Volume 232, Birkhäuser, 2005, pp. 525-570 | DOI | MR | Zbl
[23] Spectral invariants, analysis of the Floer moduli space, and geometry of the Hamiltonian diffeomorphism group, Duke Math. J., Volume 130 (2005) no. 2, pp. 199-295 | DOI | MR | Zbl
[24] Calabi quasi-morphisms for some non-monotone symplectic manifolds, Algebr. Geom. Topol., Volume 6 (2006), pp. 405-434 | DOI | MR | Zbl
[25] Notes de cours : Topologie algébrique, 2024 (https://www.imo.universite-paris-saclay.fr/~frederic.paulin/notescours/cours_topoalg.pdf)
[26] The homotopy of , J. Lond. Math. Soc. (2), Volume 8 (1974), pp. 193-197 | DOI | MR | Zbl
[27] On the action spectrum for closed symplectically aspherical manifolds, Pac. J. Math., Volume 193 (2000) no. 2, pp. 419-461 | Zbl | DOI | MR
[28] of symplectic automorphism groups and invertibles in quantum homology rings, Geom. Funct. Anal., Volume 7 (1997) no. 6, pp. 1046-1095 | DOI | MR | Zbl
[29] Viterbo conjecture for Zoll symmetric spaces, Invent. Math., Volume 230 (2022) no. 1, pp. 321-373 | DOI | MR | Zbl
[30] Symplectic topology as the geometry of generating functions, Math. Ann., Volume 292 (1992) no. 4, pp. 685-710 | DOI | MR | Zbl
[31] On the supports in the Humilière completion and -coisotropic sets (2022) | arXiv | Zbl
[32] Symplectic homogenization, J. Éc. Polytech., Math., Volume 10 (2023), pp. 67-140 | MR | Zbl | DOI | Numdam
Cité par Sources :