Essential loops in completions of Hamiltonian groups
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 5, pp. 1295-1323

We initiate the study of the fundamental group of natural completions of the group of Hamiltonian diffeomorphisms, namely its $C^0$-closure $\overline{\mathrm{Ham}}(M,\omega )$ in the set of all homeomorphisms, and its completion with respect to the spectral norm $\widehat{\mathrm{Ham}}(M,\omega )$. We prove that in some situations, namely complex projective spaces and rational Hirzebruch surfaces, certain Hamiltonian loops that were known to be non-trivial in $\pi _1(\mathrm{Ham}(M,\omega ))$ remain non-trivial in $\pi _1(\widehat{\mathrm{Ham}}(M,\omega ))$. This yields in particular cases, including $\mathbb{C}\mathrm{P}^2$ and the monotone $S^2\times S^2$, the injectivity of the map $\pi _1(\mathrm{Ham}(M,\omega ))\rightarrow \pi _1(\widehat{\mathrm{Ham}}(M,\omega ))$ induced by the inclusion. The same results hold for the Hofer completion of $\mathrm{Ham}(M,\omega )$. Moreover, whenever the spectral norm is known to be $C^0$-continuous, they also hold for $\overline{\mathrm{Ham}}(M,\omega )$.

Our method relies on computations of the valuation of Seidel elements and hence of the spectral norm on $\pi _1(\mathrm{Ham}(M,\omega ))$. Some of these computations were known before, but we also present new ones which might be of independent interest. For example, we show that the spectral pseudo-norm is degenerate when $(M,\omega )$ is any non-monotone $S^{2}\times S^{2}$. At the contrary, it is a genuine norm when $M$ is the 1-point blow-up of $\mathbb{C}\mathrm{P}^{2}$; it is unbounded for small sizes of the blow-up and become bounded starting at the monotone one.

Nous initions l’étude du groupe fondamental de certaines complétions naturelles du groupe des difféomorphismes hamiltoniens. Plus précisément, nous considérons son adhérence $\overline{\mathrm{Ham}}(M,\omega )$ dans le groupe des homéomorphismes pour la topologie $C^0$ et sa complétion pour la norme spectrale $\widehat{\mathrm{Ham}}(M,\omega )$. Nous montrons que dans certaines situations, comme les espaces projectifs complexes ou les surfaces de Hirzebruch rationnelles, certains lacets hamiltoniens connus pour être non-triviaux dans $\pi _1(\mathrm{Ham}(M,\omega ))$ le restent dans $\pi _1(\widehat{\mathrm{Ham}}(M,\omega ))$. Dans des cas particuliers, incluant $\mathbb{C}\mathrm{P}^2$ et le produit $S^2\times S^2$ monotone, ceci implique l’injectivité de l’application $\pi _1(\mathrm{Ham}(M,\omega ))\rightarrow \pi _1(\widehat{\mathrm{Ham}}(M,\omega ))$ induite par l’inclusion. Les mêmes résultats s’appliquent à la complétion de $\mathrm{Ham}(M,\omega )$ pour la norme de Hofer. De plus, ils restent valables pour $\overline{\mathrm{Ham}}(M,\omega )$ dans toute situation où la norme spectrale est $C^0$-continue.

Notre méthode repose sur le calcul des valuations des éléments de Seidel, et donc de la pseudo-norme spectrale sur $\pi _1(\mathrm{Ham}(M,\omega ))$. Certains de ces calculs étaient déjà connus, mais nous en présentons aussi de nouveaux, qui nous semblent intéressants en eux-mêmes. Par exemple, nous montrons que la pseudo-norme spectrale sur $\pi _1(\mathrm{Ham}(M,\omega ))$ est dégénérée lorsque $M$ est n’importe quel produit $S^{2}\times S^{2}$ non-monotone. À l’inverse, c’est une norme lorsque $M$ est l’éclaté en un point de $\mathbb{C}\mathrm{P}^{2}$ ; celle-ci est de plus non-bornée pour les éclatements de petite taille et devient bornée à partir de l’éclatement correspondant au cas monotone.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1833
Classification : 53D05
Keywords: Hamiltonian diffeomorphisms, spectral norm, Seidel homomorphism

Vincent Humilière 1 ; Alexandre Jannaud 2 ; Rémi Leclercq 3

1 Sorbonne Université and Université de Paris, CNRS, IMJ-PRG, F-75005 Paris, France & Institut Universitaire de France.
2 Heidelberg University, Institut für Mathematik, Excellence Cluster STRUCTURES, 69120 Heidelberg, Germany
3 Université Paris-Saclay, CNRS, Laboratoire de mathématiques d’Orsay, 91405, Orsay, France.
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2025_6_34_5_1295_0,
     author = {Vincent Humili\`ere and Alexandre Jannaud and R\'emi Leclercq},
     title = {Essential loops in completions of {Hamiltonian} groups},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1295--1323},
     year = {2025},
     publisher = {Universit\'e de Toulouse, Toulouse},
     volume = {Ser. 6, 34},
     number = {5},
     doi = {10.5802/afst.1833},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1833/}
}
TY  - JOUR
AU  - Vincent Humilière
AU  - Alexandre Jannaud
AU  - Rémi Leclercq
TI  - Essential loops in completions of Hamiltonian groups
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2025
SP  - 1295
EP  - 1323
VL  - 34
IS  - 5
PB  - Université de Toulouse, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1833/
DO  - 10.5802/afst.1833
LA  - en
ID  - AFST_2025_6_34_5_1295_0
ER  - 
%0 Journal Article
%A Vincent Humilière
%A Alexandre Jannaud
%A Rémi Leclercq
%T Essential loops in completions of Hamiltonian groups
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2025
%P 1295-1323
%V 34
%N 5
%I Université de Toulouse, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1833/
%R 10.5802/afst.1833
%G en
%F AFST_2025_6_34_5_1295_0
Vincent Humilière; Alexandre Jannaud; Rémi Leclercq. Essential loops in completions of Hamiltonian groups. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 5, pp. 1295-1323. doi: 10.5802/afst.1833

[1] Miguel Abreu; Dusa McDuff Topology of symplectomorphism groups of rational ruled surfaces, J. Am. Math. Soc., Volume 13 (2000) no. 4, pp. 971-1009 | DOI | MR | Zbl

[2] Sílvia Anjos; Rémi Leclercq Noncontractible Hamiltonian loops in the kernel of Seidel’s representation, Pac. J. Math., Volume 290 (2017) no. 2, pp. 257-272 | DOI | MR | Zbl

[3] Sílvia Anjos; Rémi Leclercq Seidel’s morphism of toric 4-manifolds, J. Symplectic Geom., Volume 16 (2018) no. 1, pp. 1-68 | DOI | MR | Zbl

[4] Marie-Claude Arnaud; Vincent Humilière; Claude Viterbo Higher Dimensional Birkhoff attractors (2024) | arXiv | Zbl

[5] Lev Buhovsky; Vincent Humilière; Sobhan Seyfaddini A C 0 counterexample to the Arnold conjecture, Invent. Math., Volume 213 (2018) no. 2, pp. 759-809 | DOI | MR | Zbl

[6] Lev Buhovsky; Vincent Humilière; Sobhan Seyfaddini The action spectrum and C 0 symplectic topology, Math. Ann., Volume 380 (2021) no. 1-2, pp. 293-316 | DOI | MR | Zbl

[7] Michael Entov; Leonid Polterovich Calabi quasimorphism and quantum homology, Int. Math. Res. Not., Volume 2003 (2003) no. 30, pp. 1635-1676 | DOI | MR | Zbl

[8] Andreas Floer Morse theory for Lagrangian intersections, J. Differ. Geom., Volume 28 (1988) no. 3, pp. 513-547 | DOI | MR | Zbl

[9] Andreas Floer The unregularized gradient flow of the symplectic action, Commun. Pure Appl. Math., Volume 41 (1988) no. 6, pp. 775-813 | DOI | MR | Zbl

[10] Andreas Floer Symplectic fixed points and holomorphic spheres, Commun. Math. Phys., Volume 120 (1989) no. 4, pp. 575-611 | MR | Zbl | DOI

[11] Andreas Floer Witten’s complex and infinite-dimensional Morse theory, J. Differ. Geom., Volume 30 (1989) no. 1, pp. 207-221 | DOI | MR | Zbl

[12] Mikhaïl Gromov Pseudo holomorphic curves in symplectic manifolds, Invent. Math., Volume 82 (1985) no. 2, pp. 307-347 | DOI | MR | Zbl

[13] Vincent Humilière On some completions of the space of Hamiltonian maps, Bull. Soc. Math. Fr., Volume 136 (2008) no. 3, pp. 373-404 | DOI | MR | Zbl | Numdam

[14] Alexandre Jannaud Dehn–Seidel twist, C 0 symplectic topology and barcodes (2021) | arXiv | Zbl

[15] Alexandre Jannaud Free subgroup of the C 0 symplectic mapping class group (2022) | arXiv | Zbl

[16] Patrice Le Calvez Une version feuilletée équivariante du théorème de translation de Brouwer, Publ. Math., Inst. Hautes Étud. Sci., Volume 102 (2005), pp. 1-98 | DOI | MR | Zbl | Numdam

[17] Patrice Le Calvez From Brouwer theory to the study of homeomorphisms of surfaces, Proceedings of the international congress of mathematicians (ICM). Vol. III Invited lectures, European Mathematical Society, 2006, pp. 77-98 | MR | Zbl

[18] Patrice Le Calvez Periodic orbits of Hamiltonian homeomorphisms of surfaces, Duke Math. J., Volume 133 (2006) no. 1, pp. 125-184 | Zbl | DOI | MR

[19] Dusa McDuff Geometric variants of the Hofer norm, J. Symplectic Geom., Volume 1 (2002) no. 2, pp. 197-252 | DOI | MR | Zbl

[20] Dusa McDuff Monodromy in Hamiltonian Floer theory, Comment. Math. Helv., Volume 85 (2010) no. 1, pp. 95-133 | DOI | MR | Zbl

[21] Dusa McDuff; Susan Tolman Topological properties of Hamiltonian circle actions, IMRP, Int. Math. Res. Pap., Volume 2006 (2006), 72826, 77 pages | DOI | MR | Zbl

[22] Yong-Geun Oh Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds, The breadth of symplectic and Poisson geometry (Progress in Mathematics), Volume 232, Birkhäuser, 2005, pp. 525-570 | DOI | MR | Zbl

[23] Yong-Geun Oh Spectral invariants, analysis of the Floer moduli space, and geometry of the Hamiltonian diffeomorphism group, Duke Math. J., Volume 130 (2005) no. 2, pp. 199-295 | DOI | MR | Zbl

[24] Yaron Ostrover Calabi quasi-morphisms for some non-monotone symplectic manifolds, Algebr. Geom. Topol., Volume 6 (2006), pp. 405-434 | DOI | MR | Zbl

[25] Frédéric Paulin Notes de cours : Topologie algébrique, 2024 (https://www.imo.universite-paris-saclay.fr/~frederic.paulin/notescours/cours_topoalg.pdf)

[26] Seiya Sasao The homotopy of Map (CP m ,CP n ), J. Lond. Math. Soc. (2), Volume 8 (1974), pp. 193-197 | DOI | MR | Zbl

[27] Matthias Schwarz On the action spectrum for closed symplectically aspherical manifolds, Pac. J. Math., Volume 193 (2000) no. 2, pp. 419-461 | Zbl | DOI | MR

[28] Paul Seidel π 1 of symplectic automorphism groups and invertibles in quantum homology rings, Geom. Funct. Anal., Volume 7 (1997) no. 6, pp. 1046-1095 | DOI | MR | Zbl

[29] Egor Shelukhin Viterbo conjecture for Zoll symmetric spaces, Invent. Math., Volume 230 (2022) no. 1, pp. 321-373 | DOI | MR | Zbl

[30] Claude Viterbo Symplectic topology as the geometry of generating functions, Math. Ann., Volume 292 (1992) no. 4, pp. 685-710 | DOI | MR | Zbl

[31] Claude Viterbo On the supports in the Humilière completion and γ-coisotropic sets (2022) | arXiv | Zbl

[32] Claude Viterbo Symplectic homogenization, J. Éc. Polytech., Math., Volume 10 (2023), pp. 67-140 | MR | Zbl | DOI | Numdam

Cité par Sources :