Horocyclic and geodesic orbits on geometrically infinite surfaces with variable negative curvature
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 5, pp. 1325-1344

We study the behaviour of the horocyclic orbit of a vector on the unit tangent bundle of a geometrically infinite surface with variable negative curvature, when the corresponding geodesic ray is almost minimizing and the injectivity radius is finite.

On étudie le comportement de l’orbite horocyclique d’un vecteur sur le fibré tangent unitaire d’une surface géométriquement infinie à courbure négative variable, lorsque le rayon géodésique correspondant est presque minimisant et que le rayon d’injectivité est fini.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1834
Classification : 10X99, 14A12, 11L05
Keywords: Horocyclic flow, variable negative curvature, geometrically infinite surfaces
Mots-clés : semblable banalité, autosimilarité logarithmique, loi de Gauß

María Victoria García 1

1 Universidad de la República, Facultad de Ciencias Económicas y Administración, Departamento de Métodos Cuantitativos, 1926 G. Ramirez st., Montevideo (Uruguay)
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2025_6_34_5_1325_0,
     author = {Mar{\'\i}a Victoria Garc{\'\i}a},
     title = {Horocyclic and geodesic orbits on geometrically infinite surfaces with variable negative curvature},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1325--1344},
     year = {2025},
     publisher = {Universit\'e de Toulouse, Toulouse},
     volume = {Ser. 6, 34},
     number = {5},
     doi = {10.5802/afst.1834},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1834/}
}
TY  - JOUR
AU  - María Victoria García
TI  - Horocyclic and geodesic orbits on geometrically infinite surfaces with variable negative curvature
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2025
SP  - 1325
EP  - 1344
VL  - 34
IS  - 5
PB  - Université de Toulouse, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1834/
DO  - 10.5802/afst.1834
LA  - en
ID  - AFST_2025_6_34_5_1325_0
ER  - 
%0 Journal Article
%A María Victoria García
%T Horocyclic and geodesic orbits on geometrically infinite surfaces with variable negative curvature
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2025
%P 1325-1344
%V 34
%N 5
%I Université de Toulouse, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1834/
%R 10.5802/afst.1834
%G en
%F AFST_2025_6_34_5_1325_0
María Victoria García. Horocyclic and geodesic orbits on geometrically infinite surfaces with variable negative curvature. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 5, pp. 1325-1344. doi: 10.5802/afst.1834

[1] Fernando Alcalde Cuesta; Françoise Dal’Bo; Matilde Martínez; Alberto Verjovsky Corrigendum to “Minimality of the horocycle flow on laminations by hyperbolic surfaces with non-trivial topology”, Discrete Contin. Dyn. Syst., Volume 37 (2017) no. 8, pp. 4585-4586 | Zbl | MR | DOI

[2] Werner Ballmann Lectures on spaces of nonpositive curvature, DMV Seminar, 25, Birkhäuser, 1995 (with an appendix by Misha Brin) | DOI | Zbl | MR

[3] Ergodic theory, symbolic dynamics, and hyperbolic spaces. Lectures given at the workshop “Hyperbolic geometry and ergodic theory”, held at the International Centre for Theoretical Physics in Trieste, Italy, 17-28 April, 1989 (Tim Bedford; Michael Keane; Caroline Series, eds.), Oxford Science Publications, Oxford University Press, 1991 | Zbl | DOI | MR

[4] Alexandre Bellis On the links between horocyclic and geodesic orbits on geometrically infinite surfaces, J. Éc. Polytech., Math., Volume 5 (2018), pp. 443-454 | DOI | Zbl | MR | Numdam

[5] Manfredo Perdigão do Carmo Riemannian geometry, Mathematics: Theory & Applications, Birkhäuser, 1992 | DOI | Zbl

[6] Françoise Dal’Bo Topologie du feuilletage fortement stable, Ann. Inst. Fourier, Volume 50 (2000) no. 3, pp. 981-993 | DOI | Zbl | Numdam

[7] Patrick Eberlein Geodesic flows on negatively curved manifolds. II, Trans. Am. Math. Soc., Volume 178 (1973), pp. 57-82 | DOI | Zbl | MR

[8] Gustav A. Hedlund Fuchsian groups and transitive horocycles, Duke Math. J., Volume 2 (1936) no. 3, pp. 530-542 | DOI | Zbl | MR

[9] Takashi Inaba An example of a flow on a non-compact surface without minimal set, Ergodic Theory Dyn. Syst., Volume 19 (1999) no. 1, pp. 31-33 | DOI | Zbl | MR

[10] Anatole Katok; Boris Hasselblatt Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and Its Applications, 54, Cambridge University Press, 1995 (with a supplementary chapter by Katok and Leonardo Mendoza) | Zbl | DOI

[11] M. Kulikov The horocycle flow without minimal sets, C. R. Math., Volume 338 (2004) no. 6, pp. 477-480 | DOI | MR | Zbl | Numdam

[12] Shigenori Matsumoto Horocycle flows without minimal sets, J. Math. Sci., Tokyo, Volume 23 (2016) no. 3, pp. 661-673 | Zbl | MR

[13] Isadore M. Singer; John A. Thorpe Lecture notes on elementary topology and geometry, Undergraduate Texts in Mathematics, Springer, 1976 (reprint of the 1967 edition) | DOI | Zbl | MR

Cité par Sources :