We study the behaviour of the horocyclic orbit of a vector on the unit tangent bundle of a geometrically infinite surface with variable negative curvature, when the corresponding geodesic ray is almost minimizing and the injectivity radius is finite.
On étudie le comportement de l’orbite horocyclique d’un vecteur sur le fibré tangent unitaire d’une surface géométriquement infinie à courbure négative variable, lorsque le rayon géodésique correspondant est presque minimisant et que le rayon d’injectivité est fini.
Accepté le :
Publié le :
Keywords: Horocyclic flow, variable negative curvature, geometrically infinite surfaces
Mots-clés : semblable banalité, autosimilarité logarithmique, loi de Gauß
María Victoria García 1
CC-BY 4.0
@article{AFST_2025_6_34_5_1325_0,
author = {Mar{\'\i}a Victoria Garc{\'\i}a},
title = {Horocyclic and geodesic orbits on geometrically infinite surfaces with variable negative curvature},
journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
pages = {1325--1344},
year = {2025},
publisher = {Universit\'e de Toulouse, Toulouse},
volume = {Ser. 6, 34},
number = {5},
doi = {10.5802/afst.1834},
language = {en},
url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1834/}
}
TY - JOUR AU - María Victoria García TI - Horocyclic and geodesic orbits on geometrically infinite surfaces with variable negative curvature JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2025 SP - 1325 EP - 1344 VL - 34 IS - 5 PB - Université de Toulouse, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1834/ DO - 10.5802/afst.1834 LA - en ID - AFST_2025_6_34_5_1325_0 ER -
%0 Journal Article %A María Victoria García %T Horocyclic and geodesic orbits on geometrically infinite surfaces with variable negative curvature %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2025 %P 1325-1344 %V 34 %N 5 %I Université de Toulouse, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1834/ %R 10.5802/afst.1834 %G en %F AFST_2025_6_34_5_1325_0
María Victoria García. Horocyclic and geodesic orbits on geometrically infinite surfaces with variable negative curvature. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 5, pp. 1325-1344. doi: 10.5802/afst.1834
[1] Corrigendum to “Minimality of the horocycle flow on laminations by hyperbolic surfaces with non-trivial topology”, Discrete Contin. Dyn. Syst., Volume 37 (2017) no. 8, pp. 4585-4586 | Zbl | MR | DOI
[2] Lectures on spaces of nonpositive curvature, DMV Seminar, 25, Birkhäuser, 1995 (with an appendix by Misha Brin) | DOI | Zbl | MR
[3] Ergodic theory, symbolic dynamics, and hyperbolic spaces. Lectures given at the workshop “Hyperbolic geometry and ergodic theory”, held at the International Centre for Theoretical Physics in Trieste, Italy, 17-28 April, 1989 (Tim Bedford; Michael Keane; Caroline Series, eds.), Oxford Science Publications, Oxford University Press, 1991 | Zbl | DOI | MR
[4] On the links between horocyclic and geodesic orbits on geometrically infinite surfaces, J. Éc. Polytech., Math., Volume 5 (2018), pp. 443-454 | DOI | Zbl | MR | Numdam
[5] Riemannian geometry, Mathematics: Theory & Applications, Birkhäuser, 1992 | DOI | Zbl
[6] Topologie du feuilletage fortement stable, Ann. Inst. Fourier, Volume 50 (2000) no. 3, pp. 981-993 | DOI | Zbl | Numdam
[7] Geodesic flows on negatively curved manifolds. II, Trans. Am. Math. Soc., Volume 178 (1973), pp. 57-82 | DOI | Zbl | MR
[8] Fuchsian groups and transitive horocycles, Duke Math. J., Volume 2 (1936) no. 3, pp. 530-542 | DOI | Zbl | MR
[9] An example of a flow on a non-compact surface without minimal set, Ergodic Theory Dyn. Syst., Volume 19 (1999) no. 1, pp. 31-33 | DOI | Zbl | MR
[10] Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and Its Applications, 54, Cambridge University Press, 1995 (with a supplementary chapter by Katok and Leonardo Mendoza) | Zbl | DOI
[11] The horocycle flow without minimal sets, C. R. Math., Volume 338 (2004) no. 6, pp. 477-480 | DOI | MR | Zbl | Numdam
[12] Horocycle flows without minimal sets, J. Math. Sci., Tokyo, Volume 23 (2016) no. 3, pp. 661-673 | Zbl | MR
[13] Lecture notes on elementary topology and geometry, Undergraduate Texts in Mathematics, Springer, 1976 (reprint of the 1967 edition) | DOI | Zbl | MR
Cité par Sources :