[Vers une analyse asymptotique de la fonctionnelle de Ginzburg–Landau anisotrope]
We develop a set of tools for the asymptotic analysis of minimizers of the anisotropic Ginzburg–Landau energy functional among the admissible competitors with Dirichlet boundary datum of negative degree $-D$. As a byproduct of our analysis, we prove that the energy of a minimizer is $K\ln (1/\varepsilon )+o(\ln (1/\varepsilon ))$, where $K$ depends only on $D$ and the material constants that enter into the expression for the energy.
Nous proposons plusieurs outils pour l’analyse des minimiseurs de la fonctionnelle de Ginzburg–Landau anisotrope avec donnée de Dirichlet de degré négatif $-D$. Comme une application de notre analyse, nous montrons que l’énergie des minimiseurs est $K\ln (1/\varepsilon )+o(\ln (1/\varepsilon ))$, où la constante $K$ dépend uniquement de $D$ et des constantes physiques qui apparaissent dans l’expression de l’énergie.
Accepté le :
Publié le :
Keywords: Anisotropic Ginzburg–Landau, Oseen–Frank, nematic, vortex, Pohozaev identity
Dmitry Golovaty 1 ; Petru Mironescu 2 ; Peter Sternberg 3
CC-BY 4.0
@article{AFST_2025_6_34_5_1367_0,
author = {Dmitry Golovaty and Petru Mironescu and Peter Sternberg},
title = {Towards an asymptotic analysis of the anisotropic {Ginzburg{\textendash}Landau} model},
journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
pages = {1367--1432},
year = {2025},
publisher = {Universit\'e de Toulouse, Toulouse},
volume = {Ser. 6, 34},
number = {5},
doi = {10.5802/afst.1836},
language = {en},
url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1836/}
}
TY - JOUR AU - Dmitry Golovaty AU - Petru Mironescu AU - Peter Sternberg TI - Towards an asymptotic analysis of the anisotropic Ginzburg–Landau model JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2025 SP - 1367 EP - 1432 VL - 34 IS - 5 PB - Université de Toulouse, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1836/ DO - 10.5802/afst.1836 LA - en ID - AFST_2025_6_34_5_1367_0 ER -
%0 Journal Article %A Dmitry Golovaty %A Petru Mironescu %A Peter Sternberg %T Towards an asymptotic analysis of the anisotropic Ginzburg–Landau model %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2025 %P 1367-1432 %V 34 %N 5 %I Université de Toulouse, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1836/ %R 10.5802/afst.1836 %G en %F AFST_2025_6_34_5_1367_0
Dmitry Golovaty; Petru Mironescu; Peter Sternberg. Towards an asymptotic analysis of the anisotropic Ginzburg–Landau model. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 5, pp. 1367-1432. doi: 10.5802/afst.1836
[1] Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Commun. Pure Appl. Math., Volume 12 (1959), pp. 623-727 | Zbl | DOI
[2] Ginzburg–Landau vortices, Progress in Nonlinear Differential Equations and their Applications, 13, Birkhäuser, 1994 | Zbl | DOI
[3] Quantization effects for in , Arch. Ration. Mech. Anal., Volume 126 (1994) no. 1, pp. 35-58 | DOI | Zbl | MR
[4] Equazioni ellittiche del ordine espazi , Ann. Mat. Pura Appl. (4), Volume 69 (1965), pp. 321-381 | DOI | Zbl | MR
[5] Analysis of a Ginzburg–Landau type energy model for smectic liquid crystals with defects, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 30 (2013) no. 6, pp. 1009-1026 | DOI | Zbl | Numdam
[6] Interior estimates for elliptic systems of partial differential equations, Commun. Pure Appl. Math., Volume 8 (1955), pp. 503-538 | DOI | Zbl | MR
[7] Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Mathematics Studies, 105, Princeton University Press, 1983 | DOI | Zbl | MR
[8] Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, 224, Springer, 1983 | Zbl
[9] A Ginzburg–Landau-type problem for highly anisotropic nematic liquid crystals, SIAM J. Math. Anal., Volume 51 (2019) no. 1, pp. 276-320 | DOI | Zbl | MR
[10] Lower bounds for the energy of -valued maps in perforated domains, J. Anal. Math., Volume 66 (1995), pp. 295-305 | DOI | Zbl | MR
[11] Lower Bounds for Generalized Ginzburg–Landau Functionals, SIAM J. Math. Anal., Volume 30 (1999) no. 4, pp. 721-746 | DOI | MR | Zbl
[12] Entire vortex solutions of negative degree for the anisotropic Ginzburg–Landau system, Arch. Ration. Mech. Anal., Volume 245 (2022) no. 1, pp. 565-586 | DOI | Zbl | MR
[13] Les minimiseurs locaux pour l’équation de Ginzburg–Landau sont à symétrie radiale, C. R. Math., Volume 323 (1996) no. 6, pp. 593-598 | Zbl
[14] On the analyticity of the solutions of analytic non-linear elliptic systems of partial differential equations. I. Analyticity in the interior, Am. J. Math., Volume 80 (1958), pp. 198-218 | DOI | Zbl | MR
[15] Sur l’analyticité des solutions des systèmes d’équations différentielles, Rec. Math. Moscou, n. Ser., Volume 5 (1939), pp. 3-70 | Zbl | MR
[16] On the basic concentration estimate for the Ginzburg–Landau equation, Differ. Integral Equ., Volume 11 (1998) no. 5, pp. 771-779 | Zbl | MR
[17] Locally minimising solutions of in , Proc. R. Soc. Edinb., Sect. A, Math., Volume 128 (1998) no. 2, pp. 349-358 | DOI | Zbl | MR
[18] Lower bounds for the energy of unit vector fields and applications, J. Funct. Anal., Volume 152 (1998) no. 2, pp. 379-403 | DOI | Zbl
[19] Vortices in the magnetic Ginzburg-Landau model, Progress in Nonlinear Differential Equations and their Applications, 70, Birkhäuser, 2007 | Zbl | MR | DOI
[20] On the asymptotic behavior of minimizers of the Ginzburg–Landau model in 2 dimensions, Differ. Integral Equ., Volume 7 (1994) no. 5-6, pp. 1613-1624 | Zbl
[21] Erratum: “On the asymptotic behavior of minimizers of the Ginzburg–Landau model in dimensions”, Differ. Integral Equ., Volume 8 (1995) no. 1, p. 224 | Zbl | MR
[22] Variational theories for liquid crystals, Applied Mathematics and Mathematical Computation, 8, Chapman & Hall, 1994 | Zbl | MR | DOI
Cité par Sources :