logo AFST
Twisted matings and equipotential gluings
Xavier Buff; Adam L. Epstein; Sarah Koch
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 21 (2012) no. S5, p. 995-1031

One crucial tool for studying postcritically finite rational maps is Thurston’s topological characterization of rational maps. This theorem is proved by iterating a holomorphic endomorphism on a certain Teichmüller space. The graph of this endomorphism covers a correspondence on the level of moduli space. In favorable cases, this correspondence is the graph of a map, which can be used to study matings. We illustrate this by way of example: we study the mating of the basilica with itself.

Un outil crucial pour l’étude des fractions rationnelles post-critiquement finies est la caractérisation topologique des fractions rationnelles due à Thurston. La démonstration de ce théorème repose sur l’itération d’un endomorphisme holomorphe d’un certain espace de Teichmüller. Le graphe de cet endomorphisme revêt une correspondance au niveau de l’espace des modules. Dans des cas favorables, cette correspondance est le graphe d’une application qui peut être utilisée pour étudier les accouplements. Nous illustrons ceci par un exemple : nous étudions l’auto-accouplement de la basilique.

     author = {Xavier Buff and Adam L. Epstein and Sarah Koch},
     title = {Twisted matings and equipotential gluings},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 21},
     number = {S5},
     year = {2012},
     pages = {995-1031},
     doi = {10.5802/afst.1360},
     zbl = {06167099},
     mrnumber = {3088265},
     language = {en},
     url = {https://afst.centre-mersenne.org/item/AFST_2012_6_21_S5_995_0}
Buff, Xavier; Epstein, Adam L.; Koch, Sarah. Twisted matings and equipotential gluings. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 21 (2012) no. S5, pp. 995-1031. doi : 10.5802/afst.1360. https://afst.centre-mersenne.org/item/AFST_2012_6_21_S5_995_0/

[1] Buff (X.), Epstein (A.), Koch (S.) & Pilgrim (K.).— On Thurston’s Pullback Map Complex Dynamics, Families and Friends, D. Schleicher, AK Peters (2009). | MR 2508269 | Zbl 1180.37065

[2] Bartholdi (L.) & Nekrashevych (V.).— Thurston equivalence of topological polynomials, Acta Math. 197/1, p. 1-51 (2006). | MR 2285317 | Zbl 1176.37020

[3] Douady (A.), & Hubbard (J.H.).— A proof of Thurston’s topological characterization of rational functions, Acta Math., Dec. (1993). | MR 1251582 | Zbl 0806.30027

[4] Hubbard (J. H.).— Teichmüller theory, volume I, Matrix Editions (2006). | MR 2245223

[5] Hubbard (J. H.).— Teichmüller theory, volume II, Matrix Editions, to appear. | MR 2245223

[6] Hubbard (J. H.) & Koch (S.).— An analytic construction of the Deligne-Mumford compactification of the moduli space of curves, submitted.

[7] Keel (S.).— Intersection theory of moduli space of stable n-pointed curves of genus zero, Trans AMS. 330/2, p. 545-574 (1992). | MR 1034665 | Zbl 0768.14002

[8] Kirwan (F. C.).— Desingularizations of quotients of nonsingular varieties and their Betti numbers, Ann. of Math. (2) 122, no. 1, p. 41-85 (1985). | MR 799252 | Zbl 0592.14011

[9] Knudsen (F.) & Mumford (D.).— The projectivity of the moduli space of stable curves I: Preliminaries on “det” and “Div”, Math. Scand. 39, p. 19-55 (1976). | MR 437541 | Zbl 0343.14008

[10] Knudsen (F.).— The projectivity of the moduli space of stable curves II: The stacks M g,n , Math. Scand. 52, p. 161-199 (1983). | MR 702953 | Zbl 0544.14020

[11] Koch (S.).— Teichmüller theory and critically finite endomorphisms, submitted.

[12] Milnor (J.).— Pasting together Julia sets: a worked example of mating, Experimen. Math. 13, p. 55-92 (2004). | MR 2065568 | Zbl 1115.37051

[13] Rees (M.).— A partial description of parameter space of rational maps of degree two: Part I, Acta Math. 168, p. 11-87 (1992). | MR 1149864 | Zbl 0774.58035

[14] Selinger (N.).— Thurston’s pullback map on the augmented Teichmüller space and applications, To appear in Inventiones mathematicae. | Zbl pre06065253

[15] Shishikura (M.) & Lei (T.).— On a theorem of M. Rees for matings of polynomials, London Math. Soc. Lect. Note 274, Ed. Tan Lei, Cambridge Univ. Press, p. 289-305 (2000). | MR 1765095 | Zbl 1062.37039