@article{AFST_1986-1987_5_8_2_175_0,
author = {J. Aguirre and M. Escobedo},
title = {A {Cauchy} problem for $u_t - \Delta u = u^p \ \hbox{with}\ 0 < p < 1$. {Asymptotic} behaviour of solutions},
journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
pages = {175--203},
publisher = {Universit\'e Paul Sabatier},
address = {Toulouse},
volume = {Ser. 5, 8},
number = {2},
year = {1986-1987},
doi = {10.5802/afst.637},
zbl = {0601.35051},
language = {en},
url = {https://afst.centre-mersenne.org/articles/10.5802/afst.637/}
}
TY - JOUR
AU - J. Aguirre
AU - M. Escobedo
TI - A Cauchy problem for $u_t - \Delta u = u^p \ \hbox{with}\ 0 < p < 1$. Asymptotic behaviour of solutions
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1986-1987
SP - 175
EP - 203
VL - 8
IS - 2
PB - Université Paul Sabatier
PP - Toulouse
UR - https://afst.centre-mersenne.org/articles/10.5802/afst.637/
DO - 10.5802/afst.637
LA - en
ID - AFST_1986-1987_5_8_2_175_0
ER -
%0 Journal Article
%A J. Aguirre
%A M. Escobedo
%T A Cauchy problem for $u_t - \Delta u = u^p \ \hbox{with}\ 0 < p < 1$. Asymptotic behaviour of solutions
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 1986-1987
%P 175-203
%V 8
%N 2
%I Université Paul Sabatier
%C Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.637/
%R 10.5802/afst.637
%G en
%F AFST_1986-1987_5_8_2_175_0
J. Aguirre; M. Escobedo. A Cauchy problem for $u_t - \Delta u = u^p \ \hbox{with}\ 0 < p < 1$. Asymptotic behaviour of solutions. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 5, Tome 8 (1986-1987) no. 2, pp. 175-203. doi: 10.5802/afst.637
[1] ) and ). - Multidimensional nonlinear diffusion arising in population genetics, Advances in Mathematics, t. 30, 1978, p. 33-76. | Zbl | MR
[2] ) and ).- Analyse Convexe et Problèmes Variationnels. Dunod, Paris, 1974. | Zbl
[3] ) and ).- Variational problems related to self-similar solutions of the heat equation. - to appear in J. of Nonlinear Analysis, Theory, Methods & Appl.. | Zbl
[4] ) & ) & ).- in preparation.
[5] ).-On the blowing up of solutions of the Cauchy problem for ut = Δu + u1+α, J. Fac. Sci. Univ. of Tokio, Sect. I, t. 13, 1966, p. 109-124. | Zbl | MR
[6] ) and ).- Large time bahaviour of the solutions of a semilinear parabolic equation in Rn, J. of Diff. Eq., t. 53, 1984, p. 259-276. | Zbl | MR
[7] ) and ).- Non uniqueness for a semilinear initial value problem, Indiana Univ. Math. J., t. 31, n°2, 1982, p. 167-189. | Zbl | MR
[8] ). - On non-existence of global solutions of some semilinear parabolic equations, Proc. Japan Acad., t. 49, 1973, p. 503-505. | Zbl | MR
[9] ).- Remarks on the time behaviour of a non linear diffusion equation. Prépublication du Laboratoire d'Analyse Numérique, Universit, P. et M. Curie (Paris VI), 1985.
[10] ), ) and ).- On the growing up problem for semilinear heat equations, J. Math. Soc. Japan, t. 29, 1977, p. 407-424. | Zbl | MR
[11] ).- Rapidly decaying solutions of an O.D.E. with applications to semilinear parabolic P.D.E.'s. - to appear. | MR
[12] ).- Existence and non-existence of global solutions for a semilinear heat equation, Israel J. of Math., t. 38, n°1-2, 1981, p. 29-39. | Zbl | MR
Cité par Sources :