@article{AFST_1989_5_10_1_37_0,
author = {Alain Brillard},
title = {Asymptotic behaviour of a viscoplastic bingham fluid in porous media with periodic structure},
journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
pages = {37--64},
year = {1989},
publisher = {Universit\'e Paul Sabatier},
address = {Toulouse},
volume = {Ser. 5, 10},
number = {1},
doi = {10.5802/afst.668},
mrnumber = {1425743},
zbl = {0636.76097},
language = {en},
url = {https://afst.centre-mersenne.org/articles/10.5802/afst.668/}
}
TY - JOUR AU - Alain Brillard TI - Asymptotic behaviour of a viscoplastic bingham fluid in porous media with periodic structure JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1989 SP - 37 EP - 64 VL - 10 IS - 1 PB - Université Paul Sabatier PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.668/ DO - 10.5802/afst.668 LA - en ID - AFST_1989_5_10_1_37_0 ER -
%0 Journal Article %A Alain Brillard %T Asymptotic behaviour of a viscoplastic bingham fluid in porous media with periodic structure %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1989 %P 37-64 %V 10 %N 1 %I Université Paul Sabatier %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.668/ %R 10.5802/afst.668 %G en %F AFST_1989_5_10_1_37_0
Alain Brillard. Asymptotic behaviour of a viscoplastic bingham fluid in porous media with periodic structure. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 5, Tome 10 (1989) no. 1, pp. 37-64. doi: 10.5802/afst.668
[1] ). - Variational convergence for functions and operators. Applicable Maths Series. Pitman (London) 1984. | Zbl | MR
[2] ), ), ).- Asymptotic analysis for periodic structures. North Holland (Amsterdam) 1978. | Zbl | MR
[3] ). - Opérateurs maximaux monotones et semi-groupes de contraction dans les espaces de Hilbert. North Holland (Amsterdam) 1973. | Zbl | MR
[4] ).- Asymptotic behaviour of the solution of Mossolov and Miasnikov's problem in an open set with holes. Publications Univ. Haute Alsace n°42 1986.
[5] ). - Asymptotic analysis of incompressible and viscous fluid flow through porous media. Brinkman's law via epi-convergence methods. Ann. Fac. Sci. Toulouse t. 8 Fasc. 2 p. 225-252 1987 and Publication Avamac Perpignan n°85-11 1985. | Numdam | Zbl | MR
[6] ). - Convergence problems for functionals and operators. Proc. Int. Meeting on Recent methods in nonlinear analysis. Rome 1978. De Giorgi, Magenes, Mosco, Eds. Pitagora Ed. (Bologna) 1979. | Zbl | MR
[7] ), ).-Les inéquations en mécanique et physique, Dunod (Paris) 1972. | Zbl | MR
[8] ), ).-Analyse convexe et problèmes variationnels. Dunod (Paris) 1978. | Zbl
[9] ).-Loi de Darcy ou loi de Brinkman? CRAS Série II t. 292 1981 p. 871-874. | Zbl | MR
[10] ), ). - Ecoulement d'un fluide viscoplastique de Bingham dans un milieu poreux. J. Maths. pures et appli. 60 1981 p. 341-360. | Zbl | MR
[11] ), ). - Boundary value problems in domains with close-grained boundaries. Naukova Dumka (Kiev) 1974 (in russian). | MR
[12] ). - Non-homogeneous media and vibration theory. Lecture Notes in Physics n°127. Springer Verlag (Berlin) 1980. | Zbl | MR
[13] ).-Incompressible fluid flow in a porous medium. Convergence of the homogenization process. Appendix in [12].
[14] ). - Navier-Stokes equations. North Holland (Amsterdam) 1977. see also Les espaces de type Beppo-Levy. Ann. Inst. Fourier. t. 5, 1954, p. 305-370, Equations aux dérivées partielles. Presses de l'Université de Montreal. 1965.
[15] ). - Problèmes mathématiques en plasticité. Gauthier-Villars (Paris) 1983. | Zbl | MR
Cité par Sources :