@article{AFST_1989_5_10_3_337_0, author = {Robert A. Wolak}, title = {Foliated and associated geometric structures on foliated manifolds}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {337--360}, publisher = {Universit\'e Paul Sabatier}, address = {Toulouse}, volume = {Ser. 5, 10}, number = {3}, year = {1989}, zbl = {0698.57007}, mrnumber = {1425491}, language = {en}, url = {https://afst.centre-mersenne.org/item/AFST_1989_5_10_3_337_0/} }
TY - JOUR AU - Robert A. Wolak TI - Foliated and associated geometric structures on foliated manifolds JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1989 SP - 337 EP - 360 VL - 10 IS - 3 PB - Université Paul Sabatier PP - Toulouse UR - https://afst.centre-mersenne.org/item/AFST_1989_5_10_3_337_0/ LA - en ID - AFST_1989_5_10_3_337_0 ER -
%0 Journal Article %A Robert A. Wolak %T Foliated and associated geometric structures on foliated manifolds %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1989 %P 337-360 %V 10 %N 3 %I Université Paul Sabatier %C Toulouse %U https://afst.centre-mersenne.org/item/AFST_1989_5_10_3_337_0/ %G en %F AFST_1989_5_10_3_337_0
Robert A. Wolak. Foliated and associated geometric structures on foliated manifolds. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 5, Tome 10 (1989) no. 3, pp. 337-360. https://afst.centre-mersenne.org/item/AFST_1989_5_10_3_337_0/
[1] Pseudogroupes de Lie transitifs, Travaux en Cours, Hermann, Paris, 1984. | MR | Zbl
), ).-[2] Vector fields of finite type G-structures, J. Diff. Geom. 14, 1979, p. 1-6. | MR | Zbl
).-[3] Foliated manifolds with flat basic connections, J. Diff. Geom. 16, 1981, p. 401-406. | MR | Zbl
).-[4] Basic connections with vanishing curvature and parallel torsion, Bull. Sci. math. 106, 1982, p. 393-400. | MR | Zbl
).-[5] Riemannian foliations with parallel curvature, Nagoya Math. J. 90, 1983, p. 145-153. | MR | Zbl
).-[6] Foliations with locally reductive normal bundle, Illinois J. Math. 28, 1984, p. 691-702. | MR | Zbl
).-[7] Stability theorems for conformal foliations, Proc. A.M.S. 91, 1984, p. 55-63. | MR | Zbl
). -[8] Cartan connections in foliated bundles, Michigan Math. J. 31, 1984, p. 55-63. | MR | Zbl
).-[9] Submersions affines et feuilletages de variétés munies d'une connexion linéaire, C. R. Acad. Sc. Paris 299, 1984, p. 1013-1015. | MR | Zbl
). -[10] Affine submersions, Ann. Glob. An. Geom. 3, 1985, p. 275-287. | MR | Zbl
). -[11] Cartan submersions and Cartan foliations, Illinois J. Math. 31,2, 1987, p. 327-343. | MR | Zbl
). -[12] Feuilletages totalement géodésiques, An. Acad. Brasil Ciênc. 53, 1981, p. 427-432. | MR | Zbl
), ).-[13] Foliations with all leaves compact, Ann. Inst. Fourier 26,1, 1976, p. 265-273. | Numdam | MR | Zbl
).-[14] Invariant measures for affine foliations, Proc. AMS 86, 1982, p. 511-518. | MR | Zbl
), ), ).-[15] Structures feuilletées et cohomologie à valeurs dans un faisceau de groupoïdes, Comm. Math. Helv. 32, 1958, p. 248-329. | MR | Zbl
).-[16] Pseudogroups of local isometries, Differential Geometry, L.A.Cordero ed., Proceedings Vth International Colloquium on Differential Geometry, Santiago de Compostela 1984, Pitman 1985. | MR | Zbl
).-[17] Leaves closures in Riemannian foliations, A fête of topology, Academic Press, Boston, MA, 1988, p. 3-32. | MR | Zbl
).-[18] Characteristic Classes and Foliated Bundles, Springer Lecture Notes in Math. 493, 1975. | MR | Zbl
), ). -[19] G-foliations and their characteristic classes, Bull. A.M.S. 84,6, 1978, p. 1086-1124. | MR | Zbl
), ). -[20] Transformation Groups in Differential Geometry, Springer, Berlin, 1972. | MR | Zbl
).-[21] Foundations of Differential Geometry, Interscience Publ., New York 1963, 1969. | MR | Zbl
), ).-[22] Compact Riemannian manifolds with essential groups of conformorphisms, Trans. A.M.S 150, 1970, p. 645-651. | MR | Zbl
), ).-[23] Pfaffian systems and transverse differential geometry, Differential Geometry and Relativity, D.Reidel, 1976, p. 107-126. | MR | Zbl
). -[24] Connexions et G-structures sur les variétés feuilletées, Bull. Sc. math. 92, 1968, p. 59-63. | MR | Zbl
). -[25] Propriétés cohomologiques et propriétés topologiques des feuilletages à connection transverse projetable, Topology 12, 1973, p. 317-325. | MR | Zbl
).-[26] Sur la géométrie transverse de feuilletages, Ann. Inst. Fourier 25, 1975, p. 279-284. | Numdam | MR | Zbl
).-[27] Le problème d'équivalence pour les pseudogroupes de Lie, méthodes intrinsèques, Bull. Soc. Math. France 108, 1980, p. 95-111. | Numdam | MR | Zbl
). -[28] Invariants structuraux des feuilletages, Bull. Sc. math. 105, 1981, p. 337-347. | MR | Zbl
).-[29] Riemannian Foliations, Progress in Math., Birkhäuser, 1988. | MR | Zbl
).-[30] On local and global existence of Killing vector fields, Ann. of Math. 72, 1960, p. 105-120. | MR | Zbl
).-[31] Geometry associated with semisimple flat homogeneous spaces, Trans. A.M.S. 152, 1970, p. 159-193. | MR | Zbl
).-[32] Natural bundles have finite order, Topology 16, 1977, p. 271-277. | MR | Zbl
), ). -[33] Foliations with integrable transverse G-structures, J. Diff. Geom. 16, 1981, p. 699-710. | MR | Zbl
).-[34] The first and second fundamental theorems of Lie for Lie pseudogroups, Amer. J. Math. 84, 1962, p. 265-282. | MR | Zbl
). -[35] An Introduction to Differential Geometry, Chelsea Publ.C. (second edition), New York 1983.
).-[36] On foliations with the structure group of automorphisms of a geometric structure, J. Math. Soc. Japan 32, 1980, p. 119-152. | MR | Zbl
). -[37] Topology of 3-Manifolds, Princeton.
).-[38] Spaces of Constant Curvature, Publish or Perish Inc., 1974. | MR | Zbl
). -[39] On ∇ - G-foliations, Suppl. Rend. Cir. Mat. Palermo 6, 1984, p. 317-325. | MR | Zbl
).-[40] On G-foliations, Ann. Pol. Math. 46, 1985, p. 329-341. | MR
). -[41] On transverse structures of foliations, Suppl. Rend. Cir. Mat. Palermo 9, 1985, p. 227-243. | MR | Zbl
).-[42] Foliations admitting transverse systems of differential equations, Comp. Math. 67, 1988, p. 89-101. | Numdam | MR | Zbl
).-[43] Transverse completeness of foliated systems of ordinary differential equations, Proc. VIth Inter. Coll. on Differential Geometry, Santiago de Compostela 1988, ed. L. A. Cordero, Santiago de Compostela 1989. | MR | Zbl
). -[44] G-foliations of finite type with all leaves compact, to be publ. in Publ. Mat. UAB, 1988.
). -