@article{AFST_1990_5_11_3_55_0, author = {Rejeb Hadiji}, title = {Solutions positives de l{\textquoteright}\'equation $- \Delta u = u^p + \mu u^q$ dans un domaine \`a trou}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {55--71}, publisher = {Universit\'e Paul Sabatier}, address = {Toulouse}, volume = {5e s{\'e}rie, 11}, number = {3}, year = {1990}, zbl = {0734.35031}, language = {fr}, url = {https://afst.centre-mersenne.org/item/AFST_1990_5_11_3_55_0/} }
TY - JOUR AU - Rejeb Hadiji TI - Solutions positives de l’équation $- \Delta u = u^p + \mu u^q$ dans un domaine à trou JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1990 SP - 55 EP - 71 VL - 11 IS - 3 PB - Université Paul Sabatier PP - Toulouse UR - https://afst.centre-mersenne.org/item/AFST_1990_5_11_3_55_0/ LA - fr ID - AFST_1990_5_11_3_55_0 ER -
%0 Journal Article %A Rejeb Hadiji %T Solutions positives de l’équation $- \Delta u = u^p + \mu u^q$ dans un domaine à trou %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1990 %P 55-71 %V 11 %N 3 %I Université Paul Sabatier %C Toulouse %U https://afst.centre-mersenne.org/item/AFST_1990_5_11_3_55_0/ %G fr %F AFST_1990_5_11_3_55_0
Rejeb Hadiji. Solutions positives de l’équation $- \Delta u = u^p + \mu u^q$ dans un domaine à trou. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 5, Tome 11 (1990) no. 3, pp. 55-71. https://afst.centre-mersenne.org/item/AFST_1990_5_11_3_55_0/
[1] On a non linear elliptic equation involving the critical Sobolev exponent. The effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988) pp. 253-294. | MR | Zbl
) and ) .-[2] Elliptic equations with limiting Sobolev exponents. The impact of topology, Comm. Pure Appl. Math., 39 (1986) pp. S.17-S.39. | MR | Zbl
) .-[3]
) and ) Livre en préparation.[4] Positive solutions of elliptic equations involving critical Sobolev exponent, Comm. Pure Appl. Math., 36 (1983) pp. 437-477. | MR | Zbl
) and ) .-[5] Convergence of solutions of H-systems or how to blow bubbles, Archive Rat. Mech. Anal., 89 (1985) pp. 21-56. | MR | Zbl
) and ) .-[6] Topologie et cas limite des injections de Sobolev, C.R. Acad. Sc., Paris, 299 (1984) pp. 209-211. | MR | Zbl
) .-[7] Positive solutions of Δu + u(N+2)/(N+2) = 0 on contractible domains, à paraître. | Zbl
) .-[8] Little holes and convergence of solutions of -Δu = u(N+2)/(N+2), à paraître. | Zbl
) .-[9] La méthode de concentration-compacitéen calcul des variations Seminaire Goulaouic-Meyer-Schwartz, (1982-1983). | Numdam | MR
) .-[10] The concentration-compactness principle in calculus of variations. Part 1 and 2, Riv. Math. Iberoamericana, 1 (1985) pp. 145-201 et pp. 45-121. | MR | Zbl
) .-[11] Holes and obstacles, Ann. I.H.P. Analyse non linéaire, 5 (1988) pp. 323-345. | Numdam | MR | Zbl
) and ) .-[12] Eingenfunctions of the equation Δu + λf(u) = 0, Soviet Math. Doklady, 6 (1965) pp. 1408-1411. | Zbl
) . -[13] Sur un problème variationnel non compact : l'effet de petits trous dans le domaine, C.R. Acad. Sc. Paris, 308 (1989) pp. 349-352. | MR | Zbl
) .-[14] A global compactness result for elliptic boundary problem involving nonlinearities, Math. Z., 187 (1984) pp. 511-517. | MR | Zbl
) .-