@article{AFST_1992_6_1_2_169_0, author = {Pei Hsu and Wilfrid S. Kendall}, title = {Limiting angle of brownian motion in certain two-dimensional {Cartan-Hadamard} manifolds}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {169--186}, publisher = {Universit\'e Paul Sabatier}, address = {Toulouse}, volume = {Ser. 6, 1}, number = {2}, year = {1992}, zbl = {0770.60074}, mrnumber = {1202070}, language = {en}, url = {https://afst.centre-mersenne.org/item/AFST_1992_6_1_2_169_0/} }
TY - JOUR AU - Pei Hsu AU - Wilfrid S. Kendall TI - Limiting angle of brownian motion in certain two-dimensional Cartan-Hadamard manifolds JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1992 SP - 169 EP - 186 VL - 1 IS - 2 PB - Université Paul Sabatier PP - Toulouse UR - https://afst.centre-mersenne.org/item/AFST_1992_6_1_2_169_0/ LA - en ID - AFST_1992_6_1_2_169_0 ER -
%0 Journal Article %A Pei Hsu %A Wilfrid S. Kendall %T Limiting angle of brownian motion in certain two-dimensional Cartan-Hadamard manifolds %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1992 %P 169-186 %V 1 %N 2 %I Université Paul Sabatier %C Toulouse %U https://afst.centre-mersenne.org/item/AFST_1992_6_1_2_169_0/ %G en %F AFST_1992_6_1_2_169_0
Pei Hsu; Wilfrid S. Kendall. Limiting angle of brownian motion in certain two-dimensional Cartan-Hadamard manifolds. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 1 (1992) no. 2, pp. 169-186. https://afst.centre-mersenne.org/item/AFST_1992_6_1_2_169_0/
[1] The Dirichlet Problem at Infinity for Manifolds of Negative Curvature, J. Diff. Geom. 18 (1983), pp. 701-722. | MR | Zbl
) .-[2] Comparison Theorems in Riemannian Geometry, North Holland, Amsterdam (1975). | MR | Zbl
) and ) .-[3] Markov Processes, Springer-Verlag, Berlin (1965). | MR | Zbl
) .-[4] Stochastic Differential Equations on Manifolds, Cambridge University Press, Cambridge (1982). | MR | Zbl
) . -[5] Brownian motion, geometry, and generalizations of Picard's little theorem, Ann. Probab. 11 (1983), pp. 833-846. | MR | Zbl
) and ) .-[6] Function Theory on Manifolds Which Possess a Pole, Springer Lecture Notes in Mathematics 699, Springer-Verlag, Berlin (1979). | MR | Zbl
) and ) .-[7] The Limiting Angle of Certain Riemannian Brownian Motions, Comm. Pure and Applied Math. 38 (1985), pp. 755-768. | MR | Zbl
) and ) .-[8] Correction note to "Martingales on Manifolds and Harmonic Maps", In: Stochastics 37 (1991), pp. 253-257. | MR | Zbl
) and ) .-[9] Brownian motion, negative curvature, and harmonic maps, In: Stochastic Integrals, Proceedings, London Mathematical Society Durham Symposium, 1980, (ed. D. Williams), Springer Lecture Notes in Mathematics 851 Springer, Berlin (1981), pp. 479-491. | MR | Zbl
) . -[10] Brownian motion and a generalised little Picard's theorem, Trans. Amer. Math. Soc. 275 (1983), pp. 751-760. | MR | Zbl
) .-[11] Brownian motion on 2-dimensional manifolds of negative curvature, Séminaire de Probabilités XVIII, Springer Lecture Notes in Mathematics 1059, Springer- Verlag, Berlin (1984), pp. 70-76. | Numdam | MR | Zbl
) . -[12] Stochastic differential geometry, a coupling property, and harmonic maps, Journal London Math. Soc. 33 ( 1986a), pp. 554-566. | MR | Zbl
) .-[13] Nonnegative Ricci curvature and the Brownian coupling property, Stochastics 19 (1986b), pp. 111-129. | MR | Zbl
) .-[14] Stochastic differential geometry, In: Proceeding of the First World Congress of the Bernoulli Society (eds. Yu.V. Prohorov and V.V. Sazonov), volume 1, VNU Press, Utrecht (1987), pp. 515-524. | MR | Zbl
) .-[15] Martingales on Manifolds and Harmonic Maps, Contemporary Mathematics 73 (1988), pp. 121-157; see also Huang and Kendall (1991). | MR | Zbl
) . -[16] Symbolic Itô calculus: an introduction, Department of Statistics, University of Warwick, Research Report 217 (1991).
) .-[17] Brownian motion and harmonic functions on manifolds of negative curvature, Theor. Probab. Appl. 21 (1976), pp. 81-95. | MR | Zbl
) . -[18] Brownian motion and harmonic functions on rotationally symmetric manifolds, Ann. Probab. 14 (1986), pp. 793-801. | MR | Zbl
) .-[19] On deciding whether a surface is parabolic or hyperbolic, Amer. Math. Monthly 84 (1977), pp. 43-46. | MR | Zbl
) . -[20] Proofof the law of iterated logarithm through diffusion equation, Ann. Inst. Statist. Math. 10 (1959), pp. 21-28. | MR | Zbl
) . -[21] Étude Asymptotique et Convergence Angulaire du Mouvement Brownien sur une Variété à Courbure Négative, C. R. Acad. Sci. A280 (1975), pp. 1539-1542. | MR | Zbl
) . -[22] Diffusions, Markov Processes, and Martingales, Volume 2, Wiley, Chichester (1987). | MR | Zbl
) and ) .-[23] Bessel Diffusions as a One-Parameter Family of Diffusion Processes, Zeitschrift für Wahrscheinlichkeitstheorie und v. Geb. 27 (1973), pp. 37-46. | MR | Zbl
) and ) . -[24] The Dirichlet Problem at Infinity for a Negatively Curved Manifold, J. Diff. Geom. 18 (1983), pp. 723-732. | MR | Zbl
) . -[25] On a comparison theorem for solutions of stochastic differential equations and its applications, J. Math. Kyoto Univ. 13 (1973), pp. 497-512. | MR | Zbl
) . -[26] Asymptotic Dirichlet Problems for Harmonic Functions on Riemannian Manifolds, Trans. Amer. Math. Soc. 281 (1984), pp. 691-716. | MR | Zbl
) .-