@article{AFST_1992_6_1_2_169_0,
author = {Pei Hsu and Wilfrid S. Kendall},
title = {Limiting angle of brownian motion in certain two-dimensional {Cartan-Hadamard} manifolds},
journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
pages = {169--186},
year = {1992},
publisher = {Universit\'e Paul Sabatier},
address = {Toulouse},
volume = {Ser. 6, 1},
number = {2},
doi = {10.5802/afst.744},
mrnumber = {1202070},
zbl = {0770.60074},
language = {en},
url = {https://afst.centre-mersenne.org/articles/10.5802/afst.744/}
}
TY - JOUR AU - Pei Hsu AU - Wilfrid S. Kendall TI - Limiting angle of brownian motion in certain two-dimensional Cartan-Hadamard manifolds JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1992 SP - 169 EP - 186 VL - 1 IS - 2 PB - Université Paul Sabatier PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.744/ DO - 10.5802/afst.744 LA - en ID - AFST_1992_6_1_2_169_0 ER -
%0 Journal Article %A Pei Hsu %A Wilfrid S. Kendall %T Limiting angle of brownian motion in certain two-dimensional Cartan-Hadamard manifolds %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1992 %P 169-186 %V 1 %N 2 %I Université Paul Sabatier %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.744/ %R 10.5802/afst.744 %G en %F AFST_1992_6_1_2_169_0
Pei Hsu; Wilfrid S. Kendall. Limiting angle of brownian motion in certain two-dimensional Cartan-Hadamard manifolds. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 1 (1992) no. 2, pp. 169-186. doi: 10.5802/afst.744
[1] ) .- The Dirichlet Problem at Infinity for Manifolds of Negative Curvature, J. Diff. Geom. 18 (1983), pp. 701-722. | Zbl | MR
[2] ) and ) .- Comparison Theorems in Riemannian Geometry, North Holland, Amsterdam (1975). | Zbl | MR
[3] ) .- Markov Processes, Springer-Verlag, Berlin (1965). | Zbl | MR
[4] ) . - Stochastic Differential Equations on Manifolds, Cambridge University Press, Cambridge (1982). | Zbl | MR
[5] ) and ) .- Brownian motion, geometry, and generalizations of Picard's little theorem, Ann. Probab. 11 (1983), pp. 833-846. | Zbl | MR
[6] ) and ) .- Function Theory on Manifolds Which Possess a Pole, Springer Lecture Notes in Mathematics 699, Springer-Verlag, Berlin (1979). | Zbl | MR
[7] ) and ) .- The Limiting Angle of Certain Riemannian Brownian Motions, Comm. Pure and Applied Math. 38 (1985), pp. 755-768. | Zbl | MR
[8] ) and ) .- Correction note to "Martingales on Manifolds and Harmonic Maps", In: Stochastics 37 (1991), pp. 253-257. | Zbl | MR
[9] ) . - Brownian motion, negative curvature, and harmonic maps, In: Stochastic Integrals, Proceedings, London Mathematical Society Durham Symposium, 1980, (ed. D. Williams), Springer Lecture Notes in Mathematics 851 Springer, Berlin (1981), pp. 479-491. | Zbl | MR
[10] ) .- Brownian motion and a generalised little Picard's theorem, Trans. Amer. Math. Soc. 275 (1983), pp. 751-760. | Zbl | MR
[11] ) . - Brownian motion on 2-dimensional manifolds of negative curvature, Séminaire de Probabilités XVIII, Springer Lecture Notes in Mathematics 1059, Springer- Verlag, Berlin (1984), pp. 70-76. | Numdam | Zbl | MR
[12] ) .- Stochastic differential geometry, a coupling property, and harmonic maps, Journal London Math. Soc. 33 ( 1986a), pp. 554-566. | Zbl | MR
[13] ) .- Nonnegative Ricci curvature and the Brownian coupling property, Stochastics 19 (1986b), pp. 111-129. | Zbl | MR
[14] ) .- Stochastic differential geometry, In: Proceeding of the First World Congress of the Bernoulli Society (eds. Yu.V. Prohorov and V.V. Sazonov), volume 1, VNU Press, Utrecht (1987), pp. 515-524. | Zbl | MR
[15] ) . - Martingales on Manifolds and Harmonic Maps, Contemporary Mathematics 73 (1988), pp. 121-157; see also Huang and Kendall (1991). | Zbl | MR
[16] ) .- Symbolic Itô calculus: an introduction, Department of Statistics, University of Warwick, Research Report 217 (1991).
[17] ) . - Brownian motion and harmonic functions on manifolds of negative curvature, Theor. Probab. Appl. 21 (1976), pp. 81-95. | Zbl | MR
[18] ) .- Brownian motion and harmonic functions on rotationally symmetric manifolds, Ann. Probab. 14 (1986), pp. 793-801. | Zbl | MR
[19] ) . - On deciding whether a surface is parabolic or hyperbolic, Amer. Math. Monthly 84 (1977), pp. 43-46. | Zbl | MR
[20] ) . - Proofof the law of iterated logarithm through diffusion equation, Ann. Inst. Statist. Math. 10 (1959), pp. 21-28. | Zbl | MR
[21] ) . - Étude Asymptotique et Convergence Angulaire du Mouvement Brownien sur une Variété à Courbure Négative, C. R. Acad. Sci. A280 (1975), pp. 1539-1542. | Zbl | MR
[22] ) and ) .- Diffusions, Markov Processes, and Martingales, Volume 2, Wiley, Chichester (1987). | Zbl | MR
[23] ) and ) . - Bessel Diffusions as a One-Parameter Family of Diffusion Processes, Zeitschrift für Wahrscheinlichkeitstheorie und v. Geb. 27 (1973), pp. 37-46. | Zbl | MR
[24] ) . - The Dirichlet Problem at Infinity for a Negatively Curved Manifold, J. Diff. Geom. 18 (1983), pp. 723-732. | Zbl | MR
[25] ) . - On a comparison theorem for solutions of stochastic differential equations and its applications, J. Math. Kyoto Univ. 13 (1973), pp. 497-512. | Zbl | MR
[26] ) .- Asymptotic Dirichlet Problems for Harmonic Functions on Riemannian Manifolds, Trans. Amer. Math. Soc. 281 (1984), pp. 691-716. | Zbl | MR
Cited by Sources: