@article{AFST_1993_6_2_2_271_0, author = {Hans Peter Rehm}, title = {Prime factorization of integral {Cayley} octaves}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {271--289}, publisher = {Universit\'e Paul Sabatier}, address = {Toulouse}, volume = {Ser. 6, 2}, number = {2}, year = {1993}, zbl = {0830.17017}, mrnumber = {1253392}, language = {en}, url = {https://afst.centre-mersenne.org/item/AFST_1993_6_2_2_271_0/} }
TY - JOUR AU - Hans Peter Rehm TI - Prime factorization of integral Cayley octaves JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1993 SP - 271 EP - 289 VL - 2 IS - 2 PB - Université Paul Sabatier PP - Toulouse UR - https://afst.centre-mersenne.org/item/AFST_1993_6_2_2_271_0/ LA - en ID - AFST_1993_6_2_2_271_0 ER -
%0 Journal Article %A Hans Peter Rehm %T Prime factorization of integral Cayley octaves %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1993 %P 271-289 %V 2 %N 2 %I Université Paul Sabatier %C Toulouse %U https://afst.centre-mersenne.org/item/AFST_1993_6_2_2_271_0/ %G en %F AFST_1993_6_2_2_271_0
Hans Peter Rehm. Prime factorization of integral Cayley octaves. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 2 (1993) no. 2, pp. 271-289. https://afst.centre-mersenne.org/item/AFST_1993_6_2_2_271_0/
[1] The arithmetics of octaves and the group G2, Proc. Nederl. Akad. Wet. 1959, pp. 406-418. | MR | Zbl
) and ) .-[2] Integral Cayley numbers, Duke math. J. 13 (1946), pp. 561-578. | MR | Zbl
) .-[3] Über die Zahlentheorie der Quaternionen, Math. Werke, Bd. 2, pp. 303-330. | JFM
) . -[4] Ges. Werke, Bd. 1.
)[5] The number of Cayley integers of given norm, Proc. Edinburgh Math. Soc. 25 (1982). | MR | Zbl
) .-[6] Factorization of Cayley numbers, J. Number Theory 2 (1970), pp. 74-90. | MR | Zbl
) and ) .-[7] A certain class of multiplicative functions, Duke Math. J. 13 (1946), pp. 281-306. | MR | Zbl
) . -[8] An Introduction to Nonassociative Algebras, Academic Press, New York and London (1966). | MR | Zbl
) .-[9] Alternativkörper und quadratische Systeme, Abh. Math. Sem. Hamburg Univ. 9 (1933), pp. 393-402. | JFM | Zbl
) .-