@article{AFST_1995_6_4_2_339_0, author = {Yang Jianfu}, title = {Positive solutions of an obstacle problem}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {339--366}, publisher = {Universit\'e Paul Sabatier}, address = {Toulouse}, volume = {Ser. 6, 4}, number = {2}, year = {1995}, zbl = {0866.49017}, mrnumber = {1344725}, language = {en}, url = {https://afst.centre-mersenne.org/item/AFST_1995_6_4_2_339_0/} }
TY - JOUR AU - Yang Jianfu TI - Positive solutions of an obstacle problem JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1995 SP - 339 EP - 366 VL - 4 IS - 2 PB - Université Paul Sabatier PP - Toulouse UR - https://afst.centre-mersenne.org/item/AFST_1995_6_4_2_339_0/ LA - en ID - AFST_1995_6_4_2_339_0 ER -
%0 Journal Article %A Yang Jianfu %T Positive solutions of an obstacle problem %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1995 %P 339-366 %V 4 %N 2 %I Université Paul Sabatier %C Toulouse %U https://afst.centre-mersenne.org/item/AFST_1995_6_4_2_339_0/ %G en %F AFST_1995_6_4_2_339_0
Yang Jianfu. Positive solutions of an obstacle problem. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 4 (1995) no. 2, pp. 339-366. https://afst.centre-mersenne.org/item/AFST_1995_6_4_2_339_0/
[1] Positive solutions of elliptic obstacle problems, Preprint.
and .-[2] Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), pp. 349-381. | MR | Zbl
) and ) .-[3] Positive solutions of some nonlinear elliptic problems in unbounded domains, Arch. Rational Mech. and Anal. 99 (1987), pp. 283-300. | MR | Zbl
) and ) .-[4] Nonlinear scalar field equations, I and II, Arch. Rational Mech. and Anal. 82, No 4 (1983), pp. 313-375. | MR | Zbl
) and ) .-[5] A relation between pointwise convergence of functions and convergence of integrals, Proc. Amer. Math. Soc. 88 (1983), pp. 486-490. | MR | Zbl
) and ) .-[6] An introduction to variational inequalities and their applications, Academic Press, New York (1980). | MR | Zbl
) and ) .-[7] Uniqueness of positive solution of Δu - u + up = 0 in IRN, Arch. Rational Mech. and Anal. 105 (1989), pp. 243-266. | MR | Zbl
) .-[8] The concentration-compactness principle in the calculus of variations, the locally compact case, part 1 and part 2, Ann. Inst. H.-Poincaré Anal. Non linéaire 1 (1984), pp. 109-145, 223-283. | Numdam | MR | Zbl
) .-[9] A free boundary problem involving limiting Sobolev exponents, Manuscripta Math. 58 (1987), pp. 77-93. | MR | Zbl
) and ) .-[10] Holes and obstacles, Ann. Inst. H.-Poincaré Anal. Non linéaire 5 (1988), pp. 323-345. | Numdam | MR | Zbl
) and ) .-[11] Obstacle problems in mathematical physics, Mathematics Studies 134, The Netherlands (1987). | MR | Zbl
) .-[12] Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), pp. 149-162. | MR | Zbl
) .-[13] Bifurcation in Lp(IRN) for a semilinear elliptic equation, Proc. London Math. Soc. 57 (1988), pp. 511-541. | MR | Zbl
) .-[14] Minimax principle for lower semicontinous functions and applications to nonlinear boundary value problems, Ann. Inst. H.-Poincaré Anal. Non linéaire 3 (1986), pp. 77-109. | Numdam | Zbl
) .-[15] Positive solutions of semilinear elliptic problems in exterior domains, J. Diff. Equas. 106 (1993), pp. 40-69. | MR | Zbl
) .-[16] Existence of multiple positive solutions of inhomogeneous semilinear elliptic problems in unbounded domains, Proc. Royal Soc. Edinburg 115 A (1990), pp. 301-318. | MR | Zbl
) and ) .-