A problem of minimization with relaxed energy
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 4 (1995) no. 3, pp. 579-591.
@article{AFST_1995_6_4_3_579_0,
     author = {Rejeb Hadiji and Feng Zhou},
     title = {A problem of minimization with relaxed energy},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {579--591},
     publisher = {Universit\'e Paul Sabatier},
     address = {Toulouse},
     volume = {Ser. 6, 4},
     number = {3},
     year = {1995},
     zbl = {0861.58013},
     mrnumber = {1607513},
     language = {en},
     url = {https://afst.centre-mersenne.org/item/AFST_1995_6_4_3_579_0/}
}
TY  - JOUR
AU  - Rejeb Hadiji
AU  - Feng Zhou
TI  - A problem of minimization with relaxed energy
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 1995
SP  - 579
EP  - 591
VL  - 4
IS  - 3
PB  - Université Paul Sabatier
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/item/AFST_1995_6_4_3_579_0/
LA  - en
ID  - AFST_1995_6_4_3_579_0
ER  - 
%0 Journal Article
%A Rejeb Hadiji
%A Feng Zhou
%T A problem of minimization with relaxed energy
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 1995
%P 579-591
%V 4
%N 3
%I Université Paul Sabatier
%C Toulouse
%U https://afst.centre-mersenne.org/item/AFST_1995_6_4_3_579_0/
%G en
%F AFST_1995_6_4_3_579_0
Rejeb Hadiji; Feng Zhou. A problem of minimization with relaxed energy. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 4 (1995) no. 3, pp. 579-591. https://afst.centre-mersenne.org/item/AFST_1995_6_4_3_579_0/

[B] Bethuel (F.) . - A charaterization of maps in H1(Ω, S2) which can be approximated by smooth maps, Ann. I.H.P. Analyse nonlinéaire 7 (1990), pp. 269-286. | Numdam | MR | Zbl

[BB] Bethuel (F.) and Brezis (H.) .- Minimisation de ∫ |∇(u - x/|x|)|2 et divers phénomènes de gap C.R. Acad. Sci. Paris 310 (1990), pp. 859-864. | MR | Zbl

[BBC] Bethuel (F.) Brezis (H.) and Coron (J.-M.) .- Relaxed energies for harmonic maps in variational problems, ed. by H. Berestycki, J.-M. Coron and I. Ekeland, Birkhauser (1990). | MR | Zbl

[BZ] Bethuel (F.) and Zheng (X.) .- Density of smooth functions between two manifolds in Sobolev spaces, J. Func. Anal. 80 (1988), pp. 60-75. | MR | Zbl

[BC] Brezis (H.) and Coron (J.-M.) .- Large solutions for harmonic maps in two dimensions, Comm. Math. Phys. 92 (1983), pp. 203-215. | MR | Zbl

[BCL] Brezis (H.) Coron (J.-M.) and Lieb (H.), .- Harmonic maps with defects, Comm. Math. Phys. 107 (1986), pp. 649-705. | MR | Zbl

[M] Morrey (C.B.) . - The problem of Plateau on a Riemannian manifold, Ann. of Math. 47 (1948), pp. 807-851. | MR | Zbl

[R] Rivière (T.) . - Construction of a dipole, preprint.

[SU1] Schoen (R.) and Uhlenbeck (K.) . - A regularity theory for harmonic maps, J. Diff. Geom. 17 (1982), pp. 307-335. | MR | Zbl

[SU2] Schoen (R.) and Uhlenbeck (K.) . - Boundary regularity and the Dirichlet problem for harmonic maps, J. Diff. Geom. 18 (1983), pp. 253-268. | MR | Zbl