@article{AFST_1996_6_5_1_105_0,
author = {Maurice Gaultier and Mikel Lezaun},
title = {Spectral study of a self-adjoint operator on $L^2 (\Omega )$ related with a {Poincar\'e} type constant},
journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
pages = {105--123},
year = {1996},
publisher = {Universit\'e Paul Sabatier},
address = {Toulouse},
volume = {Ser. 6, 5},
number = {1},
doi = {10.5802/afst.821},
zbl = {0869.35066},
language = {en},
url = {https://afst.centre-mersenne.org/articles/10.5802/afst.821/}
}
TY - JOUR AU - Maurice Gaultier AU - Mikel Lezaun TI - Spectral study of a self-adjoint operator on $L^2 (\Omega )$ related with a Poincaré type constant JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1996 SP - 105 EP - 123 VL - 5 IS - 1 PB - Université Paul Sabatier PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.821/ DO - 10.5802/afst.821 LA - en ID - AFST_1996_6_5_1_105_0 ER -
%0 Journal Article %A Maurice Gaultier %A Mikel Lezaun %T Spectral study of a self-adjoint operator on $L^2 (\Omega )$ related with a Poincaré type constant %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1996 %P 105-123 %V 5 %N 1 %I Université Paul Sabatier %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.821/ %R 10.5802/afst.821 %G en %F AFST_1996_6_5_1_105_0
Maurice Gaultier; Mikel Lezaun. Spectral study of a self-adjoint operator on $L^2 (\Omega )$ related with a Poincaré type constant. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 5 (1996) no. 1, pp. 105-123. doi: 10.5802/afst.821
[1] ) .- Analyse fonctionnelle, Théorie et Applications. Masson, Paris (1983). | Zbl | MR
[2] ), ) and ) .- Applied Numerical Methods, John Wiley & Sons (1969). | Zbl
[3] ) and ) .- Analyse Mathématiques et Calcul Numérique pour les Sciences et les Techniques, Masson, Paris (1984). | Zbl | MR
[4] ) and ) .- An existence and uniqueness theorem for the transfer of mass and heat in a rectangular cavity, I.M.A. J. Appl. Math. 48 (1992), pp. 125-148. | Zbl | MR
[5] ) .- Elliptic Problems in Nonsmooth Domains, Pitman, London (1985). | Zbl | MR
[6] ) .- Les méthodes directes en théories des équations elliptiques, Masson, Paris (1967). | MR
[7] ) .- Navier-Stokes Equations, North-Holland, Amsterdam (1977). | Zbl | MR
[8] ) and ) .- Special functions, World Scientific Publishing Co., Singapore (1989). | Zbl | MR
[9] ) .- A treatise on the theory of Bessel functions, 2nd ed., Cambridge University Press, London (1944). | Zbl | MR
Cité par Sources :