@article{AFST_1997_6_6_3_511_0, author = {Mustapha Mokhtar-Kharroubi and Mohamed Chabi and Plamen Stefanov}, title = {Scattering theory with two $L^1$ spaces : application to transport equations with obstacles}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {511--523}, publisher = {Universit\'e Paul Sabatier. Facult\'e des sciences}, address = {Toulouse}, volume = {Ser. 6, 6}, number = {3}, year = {1997}, zbl = {0907.47005}, mrnumber = {1610907}, language = {en}, url = {https://afst.centre-mersenne.org/item/AFST_1997_6_6_3_511_0/} }
TY - JOUR AU - Mustapha Mokhtar-Kharroubi AU - Mohamed Chabi AU - Plamen Stefanov TI - Scattering theory with two $L^1$ spaces : application to transport equations with obstacles JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1997 SP - 511 EP - 523 VL - 6 IS - 3 PB - Université Paul Sabatier. Faculté des sciences PP - Toulouse UR - https://afst.centre-mersenne.org/item/AFST_1997_6_6_3_511_0/ LA - en ID - AFST_1997_6_6_3_511_0 ER -
%0 Journal Article %A Mustapha Mokhtar-Kharroubi %A Mohamed Chabi %A Plamen Stefanov %T Scattering theory with two $L^1$ spaces : application to transport equations with obstacles %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1997 %P 511-523 %V 6 %N 3 %I Université Paul Sabatier. Faculté des sciences %C Toulouse %U https://afst.centre-mersenne.org/item/AFST_1997_6_6_3_511_0/ %G en %F AFST_1997_6_6_3_511_0
Mustapha Mokhtar-Kharroubi; Mohamed Chabi; Plamen Stefanov. Scattering theory with two $L^1$ spaces : application to transport equations with obstacles. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 6 (1997) no. 3, pp. 511-523. https://afst.centre-mersenne.org/item/AFST_1997_6_6_3_511_0/
[1] Spectral and scattering theory for the linear Boltzmann equation in exterior domain, Math. Nachr. 137 (1988), pp. 63-77. | MR | Zbl
) .-[2] Limiting Absorption Principles and Wave Operators on L1 (μ) Spaces: Applications to Transport Theory, J. Funct. Anal. 115 (1993), pp. 119-145. | MR | Zbl
) .-[3] Scattering theory with two Hilbert spaces, J. Funct. Anal. 1 (1967), pp. 342-369. | MR | Zbl
) .-[4] A local criterion for the existence of wave operators, Izv. Akad. Nauk SSSR, 32 (1968), pp. 914-942. | MR | Zbl
) .-[5] Scattering problems for differential operators with perturbation of the space, Izv. Akad. Nauk SSSR, 35 (1971), pp. 440-455. | MR | Zbl
) .-[6] A unified approach to scattering, J. Math. pures et appl. 53 (1974), pp. 373-396. | MR | Zbl
) .-[7] Scattering theory of the linear Boltzmann operator, Comm. Math. Phys. 43 (1975), pp. 109-120. | MR | Zbl
) . -[8] Existence of the scattering matrix for linearized Boltzmann equation, Comm. Math. Phys. 41 (1975), pp. 99-108. | MR
) .-[9] On the existence of the scattering operator for the linear Boltzmann equation, J. Math. Anal. Appl. 58 (1977), pp. 541-558. | MR | Zbl
).-