logo AFST
Scattering theory with two L 1 spaces : application to transport equations with obstacles
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 6 (1997) no. 3, pp. 511-523.
@article{AFST_1997_6_6_3_511_0,
     author = {Mustapha Mokhtar-Kharroubi and Mohamed Chabi and Plamen Stefanov},
     title = {Scattering theory with two $L^1$ spaces : application to transport equations with obstacles},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {511--523},
     publisher = {Universit\'e Paul Sabatier. Facult\'e des sciences},
     address = {Toulouse},
     volume = {Ser. 6, 6},
     number = {3},
     year = {1997},
     zbl = {0907.47005},
     mrnumber = {1610907},
     language = {en},
     url = {https://afst.centre-mersenne.org/item/AFST_1997_6_6_3_511_0/}
}
TY  - JOUR
AU  - Mustapha Mokhtar-Kharroubi
AU  - Mohamed Chabi
AU  - Plamen Stefanov
TI  - Scattering theory with two $L^1$ spaces : application to transport equations with obstacles
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 1997
DA  - 1997///
SP  - 511
EP  - 523
VL  - 6
IS  - 3
PB  - Université Paul Sabatier. Faculté des sciences
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/item/AFST_1997_6_6_3_511_0/
UR  - https://zbmath.org/?q=an%3A0907.47005
UR  - https://www.ams.org/mathscinet-getitem?mr=1610907
LA  - en
ID  - AFST_1997_6_6_3_511_0
ER  - 
%0 Journal Article
%A Mustapha Mokhtar-Kharroubi
%A Mohamed Chabi
%A Plamen Stefanov
%T Scattering theory with two $L^1$ spaces : application to transport equations with obstacles
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 1997
%P 511-523
%V 6
%N 3
%I Université Paul Sabatier. Faculté des sciences
%C Toulouse
%G en
%F AFST_1997_6_6_3_511_0
Mustapha Mokhtar-Kharroubi; Mohamed Chabi; Plamen Stefanov. Scattering theory with two $L^1$ spaces : application to transport equations with obstacles. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 6 (1997) no. 3, pp. 511-523. https://afst.centre-mersenne.org/item/AFST_1997_6_6_3_511_0/

[1] Stefanov (P.) .- Spectral and scattering theory for the linear Boltzmann equation in exterior domain, Math. Nachr. 137 (1988), pp. 63-77. | MR | Zbl

[2] Mokhtar-Kharroubi (M.) .- Limiting Absorption Principles and Wave Operators on L1 (μ) Spaces: Applications to Transport Theory, J. Funct. Anal. 115 (1993), pp. 119-145. | MR | Zbl

[3] Kato (T.) .- Scattering theory with two Hilbert spaces, J. Funct. Anal. 1 (1967), pp. 342-369. | MR | Zbl

[4] Birman (M.S.) .- A local criterion for the existence of wave operators, Izv. Akad. Nauk SSSR, 32 (1968), pp. 914-942. | MR | Zbl

[5] Birman (M.S.) .- Scattering problems for differential operators with perturbation of the space, Izv. Akad. Nauk SSSR, 35 (1971), pp. 440-455. | MR | Zbl

[6] Schechter (M.) .- A unified approach to scattering, J. Math. pures et appl. 53 (1974), pp. 373-396. | MR | Zbl

[7] Hejtmanek (J.) . - Scattering theory of the linear Boltzmann operator, Comm. Math. Phys. 43 (1975), pp. 109-120. | MR | Zbl

[8] Simon (B.) .- Existence of the scattering matrix for linearized Boltzmann equation, Comm. Math. Phys. 41 (1975), pp. 99-108. | MR

[9] Voigt (J.).- On the existence of the scattering operator for the linear Boltzmann equation, J. Math. Anal. Appl. 58 (1977), pp. 541-558. | MR | Zbl