@article{AFST_1997_6_6_3_525_0,
author = {Nicola Orr\`u},
title = {On a weakly hyperbolic equation with a term of order zero},
journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
pages = {525--534},
year = {1997},
publisher = {Universit\'e Paul Sabatier},
address = {Toulouse},
volume = {Ser. 6, 6},
number = {3},
doi = {10.5802/afst.877},
mrnumber = {1610911},
zbl = {0895.35057},
language = {en},
url = {https://afst.centre-mersenne.org/articles/10.5802/afst.877/}
}
TY - JOUR AU - Nicola Orrù TI - On a weakly hyperbolic equation with a term of order zero JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1997 SP - 525 EP - 534 VL - 6 IS - 3 PB - Université Paul Sabatier PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.877/ DO - 10.5802/afst.877 LA - en ID - AFST_1997_6_6_3_525_0 ER -
%0 Journal Article %A Nicola Orrù %T On a weakly hyperbolic equation with a term of order zero %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1997 %P 525-534 %V 6 %N 3 %I Université Paul Sabatier %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.877/ %R 10.5802/afst.877 %G en %F AFST_1997_6_6_3_525_0
Nicola Orrù. On a weakly hyperbolic equation with a term of order zero. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 6 (1997) no. 3, pp. 525-534. doi: 10.5802/afst.877
[CDS] ), ) and ) .- Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps, Ann. Scuola Norm. Sup. Pisa, 6 (1979), pp. 511-559. | Numdam | Zbl | MR
[CJS] ), ) and ) .- Well-posedness in the Gevrey classes of the Cauchy problem for a non-strictly hyperbolic equation with coefficients depending on time, Ann. Scuola Norm. Sup. Pisa, 10 (1983), pp. 291-312. | Numdam | Zbl | MR
[Hör] ) .- Linear Partial Differential Operators, Springer, Berlin (1963).
[Ka] ) .- The well posed Cauchy problem for hyperbolic operators, Exposé au Séminaire Vaillant (1989).
[Ol] ) .- On the Cauchy problem for weakly hyperbolic equations of second order, Comm. Pure Appl. Math. 23 (1970), pp. 569-586. | MR
Cité par Sources :