@article{AFST_1998_6_7_1_51_0, author = {Joe Kamimoto}, title = {Asymptotic expansion of the {Bergman} kernel for weakly pseudoconvex tube domains in ${\bf C}^2$}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {51--85}, publisher = {Universit\'e Paul Sabatier. Facult\'e des sciences}, address = {Toulouse}, volume = {Ser. 6, 7}, number = {1}, year = {1998}, zbl = {0917.32018}, mrnumber = {1658444}, language = {en}, url = {https://afst.centre-mersenne.org/item/AFST_1998_6_7_1_51_0/} }
TY - JOUR AU - Joe Kamimoto TI - Asymptotic expansion of the Bergman kernel for weakly pseudoconvex tube domains in ${\bf C}^2$ JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1998 SP - 51 EP - 85 VL - 7 IS - 1 PB - Université Paul Sabatier. Faculté des sciences PP - Toulouse UR - https://afst.centre-mersenne.org/item/AFST_1998_6_7_1_51_0/ LA - en ID - AFST_1998_6_7_1_51_0 ER -
%0 Journal Article %A Joe Kamimoto %T Asymptotic expansion of the Bergman kernel for weakly pseudoconvex tube domains in ${\bf C}^2$ %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1998 %P 51-85 %V 7 %N 1 %I Université Paul Sabatier. Faculté des sciences %C Toulouse %U https://afst.centre-mersenne.org/item/AFST_1998_6_7_1_51_0/ %G en %F AFST_1998_6_7_1_51_0
Joe Kamimoto. Asymptotic expansion of the Bergman kernel for weakly pseudoconvex tube domains in ${\bf C}^2$. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 7 (1998) no. 1, pp. 51-85. https://afst.centre-mersenne.org/item/AFST_1998_6_7_1_51_0/
[1] The compatibly of the Kobayashi approach region and the admissible approach region, Illinois J. Math. 33 (1989), pp. 27-41 . | MR | Zbl
) .-[2] Zur Theorie von pseudokonformen Abbildungen, Math. Sbornik. Akad. Nauk SSSR (1936), pp. 79-96. | JFM | Zbl
) .-[3] The Bergman kernel function: Explicit formulas and zeros, prepint.
), ) and ) .-[4] Boundary limits of the Bergman kernel and metric, Michigan Math. J. 42 (1995), pp. 449-461. | MR | Zbl
), ) and ) .-[5] Sur le noyau de Bergman des domaines de Reinhardt, Invent. Math. 72 (1983), pp. 131-152. | MR | Zbl
) and ) .-[6] Projecteurs de Bergman et Szegö pour une classe de domaines faiblement pseudo-convexes et estimation Lp, Compositio Math. 46, n° 2 (1982), pp. 159-226. | Numdam | MR | Zbl
) and ) .-[7] Sur la singularité des noyaux de Bergman et de Szegö, Soc. Math. de France Astérique 34-35 (1976), pp. 123-164. | Numdam | MR | Zbl
) and ) .-[8] Estimates of invariant metric on pseudoconvex domains of dimension two, Math. Z. 200 (1989), pp. 429-266. | MR | Zbl
) .-[9] On boundary behavior of the Bergman kernel function and related domain functionals, Pacific J. Math. 29 (1969), pp. 243-250. | MR | Zbl
) . -[10] Boundary behavior of the Bergman kernel function on some pseudoconvex domains in Cn, Trans. of A.M.S. 345 (1994), pp. 803-817. | MR | Zbl
) . -[11] A Note on the Bergman Kernel, Duke Math. J. 45 (1978), pp. 259-265. | MR | Zbl
P.) .-[12] Real hypersurfaces, orders of contact, and applications, Ann. of Math. 115 (1982), pp. 615-637. | MR | Zbl
) .-[13] An explicit computation of the Bergman kernel function, J. Geom. Analysis 4 (1994), pp. 23-34. | MR | Zbl
) .-[14] Das Randverhalten der Bergmanschen Kernfunktion und Metrik in streng pseudo-konvexen Gebieten, Math. Ann. 187 (1970), pp. 9-36. | MR | Zbl
) .-[15] Ableitungen der Bergmanschen Kernfunktion und ihr Randverhalten, Math. Ann. 203 (1973), pp. 129-170. | MR | Zbl
) .- Ueber die 1. und 2.[16] Geometric and analytic boundary invariants. Comparison results, J. Geom. Analysis 3 (1993), pp. 237-267. | MR | Zbl
) and ) .-[17] Pseudoconvex domains of semiregular type, Contribution to Complex Analysis and Analytic Geometry, Aspects of Mathematics E26, Vieweg 1994. | MR | Zbl
) and ) .-[18] An alternative proof of a theorem of Boas-Straube-Yu, Complex Analysis and Geometry, Pitman Research notes in Mathematics Series, 366 (1997), pp. 112-118. | MR | Zbl
) and ) .-[19] The Bergman kernel on uniformy extendable pseudoconvex domains, Math. Ann. 273 (1986), pp. 471-478. | MR | Zbl
), ) and ) .-[20] Asymptotic expansions, Dover, New York (1956). | MR | Zbl
) .-[21] The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), pp. 1-65. | MR | Zbl
) . -[22] Explicit formulas for the Szegö kernel on certain weakly pseudoconvex domains, Proc. A.M.S. 123 (1995), pp. 3161-3168. | MR | Zbl
) and ) .-[23] The Bergman kernel of complex ovals and multivariable hypergeometric functions, to appear in J. Funct. Analysis. | MR | Zbl
) and ) .-[24] The Bergman kernel on certain weakly pseudoconvex domains, Math. Z. 220 (1995), pp. 1-9. | MR | Zbl
) .-[25] The Bergman kernel function of some Reinhardt domains, Trans. of A.M.S. 348 (1996), pp. 1771-1803. | MR | Zbl
) and ) .-[26] On the solvability of some differential operators of □b, Proc. Internat. Conf. (Cortona, Italy, 1976-1977), Scuola Norm. Sup. Pisa (1978), pp. 106-165. | MR | Zbl
) and ) .-[27] Szegö kernels of certain unbounded domains in C2, Rev. Roumaine Math. Pures Appl. 39 (1994), pp. 939-950. | MR | Zbl
) .-[28] Singularities of the Szegö kernels for certain weakly pseudoconvex domains in C2, J. Funct. Analysis 129 (1995), pp. 406-427. | MR | Zbl
) . -[29] Logarithmic growth of the Bergman kernel for weakly pseudoconvex domains in C3 of finite type, Manuscripta Math. 45 (1983), pp. 69-76. | MR | Zbl
) .-[30] The growth of the Bergman kernel on pseudoconvex domains of homogeoneous finite diagonal type, Nagoya Math. J. 126 (1992), pp. 1-24. | MR | Zbl
) . -[31] On the invariant differential metrics near pseudoconvex boundary points where the Levi form has corank one, Nagoya Math. J. 130 (1993), pp. 25-54. | MR | Zbl
) .-[32] L2 estimates and existance theorems for the ∂-operator, Acta Math. 113 (1965), pp. 89-152. | MR | Zbl
) .-[33] On Thullen domains and Hirzebruch manifolds I, J. Math. Soc. Japan 26 (1974), pp. 508-522. | MR | Zbl
) .-[34] Singularities of the Bergman kernel for certain weakly pseudoconvex domains, to appear in the Journal of Math. Sci. the Univ. of Tokyo. | MR | Zbl
) .-[35] On the singularities of non-analytic Szegö kernels, preprint. | MR
) .-[36] On an integral of Hardy and Littlewood, to appear in Kyushu J. of Math. | MR | Zbl
) .-[37] The Bergman kernel on decoupled pseudoconvex domains, to appear in Proc. of I.S.A.A.C. Congress, Reproducing kernels and their applications, Kluwer Academic Publishers. | MR
) .-[38] Boundary behavior of the ∂ on weakly pseudoconvex manifolds of dimension two, J. Diff. Geom. 6 (1972), pp. 523-542. | MR | Zbl
) .-[39] A survey of the ∂-Neumann problem, Proc. Symp. Pure Math. 41 (1984), pp. 137-145. | MR | Zbl
) .-[40] The Bergman kernel function for tubes over convex cones, Pacific J. Math. 12 (1962), pp. 1355-1359. | MR | Zbl
) . -[41] Geometric Analysis and Function Spaces, C.B.M.S., Amer. Math. Soc. 81. | MR | Zbl
) .-[42] Fatou theorems on domains in Cn, Bull. A.M.S. 16 (1987), pp. 93-96. | MR | Zbl
) .-[43] Invariant metrics and the boundary behavior of holomorphic functions on domains in Cn, J. Geom. Analysis 1 (1991), pp. 71-97. | MR | Zbl
) .-[44] Asymptotic Analysis for Integrable Connections with Irregular Singular Points, Lec. Notes in Math., Springer 1075 (1984). | MR | Zbl
) .-[45] Local geometry of decoupled pseudoconvex domains, Proceedings in honor of Hans Grauert, Aspekte de Mathematik, Vieweg, Berlin (1990), pp. 223-230. | MR | Zbl
) .-[46] Estimates on the Bergman kernels of convex domains, Adv. Math. 109 (1994), pp. 108-139. | MR | Zbl
) .-[47] On large value of L2 Holomorphic functions, Math. Res. Letters 3 (1996), pp. 247-259. | Zbl
) .-[48] Vector fields and nonisotropic metrics, Beijing Lectures in Harmonic Analysis (E. M. Stein, ed.), Ann. Math. Studies 112, Princeton University Press, Princeton, NXJ, 1986, pp. 241-306. | MR | Zbl
) . -[49] Boundary behaviorof functions holomorphic in domains of finite type, Natl. Acad. Sci. USA 78 (1981), pp. 6596-6599. | MR | Zbl
), ) and ) .-[50] Ball and metrics defined by vector fields I: Basic properties, Acta Math. 155 (1985), pp. 103-147. | MR | Zbl
), ) and ) .-[51] Asymptotic expansion of the Bergman kernel for strictly pseudoconvex complete Reinhardt domains in C2, Osaka J. Math. 31 (1994), pp. 291-329. | MR | Zbl
) .-[52] Boundary behavior of the Bergman kernel function on pseudoconvex domains, Publ. R.I.M.S., Kyoto Univ. 20 (1984), pp. 897-902. | MR | Zbl
) .-[53] On the extension of L2 holomorphic functions III: negligible weights, Math. Z. 219 (1995), pp. 215-225. | MR | Zbl
) .-[54] Fourier-Laplace transforms and the Bergman spaces, Proc. of A.M.S. 102 (1988), pp. 985-992. | MR | Zbl
) .-[55] Perturbation of linear ordinary differential equations at irregular singular points, Funkt. Ekv. 11 (1968), pp. 235-246. | MR | Zbl
) . -[56] Peak functions on weakly pseudoconvex domains, Indiana Univ. Math. J. 43 (1994), pp. 1271-1295. | MR | Zbl
) .-