@article{AFST_1998_6_7_2_169_0, author = {Didier Arnal and H\'adi Benamor and Benjamin Cahen}, title = {Minimal realizations of classical simple {Lie} algebras through deformations}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {169--184}, publisher = {Universit\'e Paul Sabatier. Facult\'e des sciences}, address = {Toulouse}, volume = {Ser. 6, 7}, number = {2}, year = {1998}, zbl = {0923.17010}, mrnumber = {1656166}, language = {en}, url = {https://afst.centre-mersenne.org/item/AFST_1998_6_7_2_169_0/} }
TY - JOUR AU - Didier Arnal AU - Hádi Benamor AU - Benjamin Cahen TI - Minimal realizations of classical simple Lie algebras through deformations JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1998 SP - 169 EP - 184 VL - 7 IS - 2 PB - Université Paul Sabatier. Faculté des sciences PP - Toulouse UR - https://afst.centre-mersenne.org/item/AFST_1998_6_7_2_169_0/ LA - en ID - AFST_1998_6_7_2_169_0 ER -
%0 Journal Article %A Didier Arnal %A Hádi Benamor %A Benjamin Cahen %T Minimal realizations of classical simple Lie algebras through deformations %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1998 %P 169-184 %V 7 %N 2 %I Université Paul Sabatier. Faculté des sciences %C Toulouse %U https://afst.centre-mersenne.org/item/AFST_1998_6_7_2_169_0/ %G en %F AFST_1998_6_7_2_169_0
Didier Arnal; Hádi Benamor; Benjamin Cahen. Minimal realizations of classical simple Lie algebras through deformations. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 7 (1998) no. 2, pp. 169-184. https://afst.centre-mersenne.org/item/AFST_1998_6_7_2_169_0/
[1] Algebraic Deformation Program on Minimal Nilpotent Orbit, Lett. Math. Phys. 30 (1994), pp. 241-250. | MR | Zbl
), ) and ) .-[2] Nilpotent Fourier Transform and Applications, Lett. Math. Phys. 9 (1985), pp. 25-34. | MR | Zbl
) and ) . -[3] Représentations * des groupes exponentiels, J. of Funct. Anal. 92 (1990), pp. 103-135. | MR | Zbl
) and ) .-[4] Moyal Product and Representations of Solvable Lie Groups, J. of Funct. Anal. 133 (1995), pp. 402-424. | MR | Zbl
), ) and ) .-[5] Deformation theory and Quantization, Ann. Phys. 110 (1978), pp. 61-151. | MR | Zbl
), ), ), ) and ) .-[6] Algèbres d'opérateurs différentiels et quotient des algèbres enveloppantes, Bull. Soc. Math. France 102 (1974), pp. 379-415. | Numdam | MR | Zbl
) . -[7] Some ideas about Quantization, Reports on Math. Phys. 15 (1978), pp. 111-145. | MR | Zbl
) .-[8] Minimal Realizations and Spectrum Generating Algebras, Comm. Math. Phys. 36 (1974), pp. 325-338. | MR | Zbl
) .-[9] The minimal orbit in a simple Lie algebra and its associated maximal ideal, Ann. Sci. Ecole Norm. Sup. 9 (1976), pp. 1-30. | Numdam | MR | Zbl
) .-[10] Hermitian Lie algebras and metaplectic representations, Trans. Math. Soc. 238 (1978), pp. 1-43. | MR | Zbl
) and ) .-[11] Representations associated to minimal coadjoint orbits, in Lecture Notes in Math., Springer-Verlarg, New York 676 (1978). | MR | Zbl
) . -[12] Lie Groups, Lie Algebras and Their Representations, Springer-Verlag, New York (1984). | MR | Zbl
) .-