@article{AFST_1998_6_7_3_365_0,
author = {David E. Blair},
title = {Special directions on contact metric manifolds of negative $\xi $-sectional curvature},
journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
pages = {365--378},
publisher = {Universit\'e Paul Sabatier. Facult\'e des sciences},
address = {Toulouse},
volume = {Ser. 6, 7},
number = {3},
year = {1998},
zbl = {0918.53012},
language = {en},
url = {https://afst.centre-mersenne.org/item/AFST_1998_6_7_3_365_0/}
}
TY - JOUR AU - David E. Blair TI - Special directions on contact metric manifolds of negative $\xi $-sectional curvature JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1998 SP - 365 EP - 378 VL - 7 IS - 3 PB - Université Paul Sabatier. Faculté des sciences PP - Toulouse UR - https://afst.centre-mersenne.org/item/AFST_1998_6_7_3_365_0/ LA - en ID - AFST_1998_6_7_3_365_0 ER -
%0 Journal Article %A David E. Blair %T Special directions on contact metric manifolds of negative $\xi $-sectional curvature %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1998 %P 365-378 %V 7 %N 3 %I Université Paul Sabatier. Faculté des sciences %C Toulouse %U https://afst.centre-mersenne.org/item/AFST_1998_6_7_3_365_0/ %G en %F AFST_1998_6_7_3_365_0
David E. Blair. Special directions on contact metric manifolds of negative $\xi $-sectional curvature. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 7 (1998) no. 3, pp. 365-378. https://afst.centre-mersenne.org/item/AFST_1998_6_7_3_365_0/
[1] ) .- Geodesic Flows on closed Riemann Manifolds with Negative Curvature, Proc. Steklov Inst. Math. 90 (1967) (Amer. Math. Soc. translation, 1969). | Zbl | MR
[2] ), ) and ) .- Flows on Homogeneous Spaces, Annals of Math. Studies 53, Princeton, 1963. | Zbl
[3] ), ) and ) .- Flots d'Anosov à distributions stable et instable différentiables, J. Amer. Math. Soc. 5 (1992), pp. 33-74. | Zbl | MR
[4] ) .- Contact Manifolds in Riemannian Geometry, Lecture Notes in Math., Springer-Verlag, Berlin 509 (1976). | Zbl | MR
[5] ) .- Rotational behavior of contact structures on 3-dimensional Lie Groups, Geometry and Topology of submanifolds V (1993), pp. 41-53. | Zbl | MR
[6] ) .- On the class of contact metric manifolds with a 3-τ-structure, to appear. | MR
[7] ) and ) .- A classification of 3-dimensional contact metric manifolds with Q⊘ = ⊘Q, II, Bull. Inst. Math. Acad. Sinica 20 (1992), pp. 379-383. | Zbl | MR
[8] ), ) and ) .- A classification of 3-dimensional contact metric manifolds with Q⊘ = ⊘Q, Kodai Math. J. 13 (1990), pp. 391-401. | Zbl | MR
[9] ) . - Flots d'Anosov dont les feuilletages stables sont différentiables, Ann. Scient. École Norm. Sup. 20 (1987), pp. 251-270. | Zbl | MR | Numdam
[10] ) and ) .- On 3-dimensional contact metric manifolds with ∇ξτ = 0, J. of Geom., to appear. | Zbl | MR
[11] ) . - Curvature of left invariant metrics on Lie groups, Adv. in Math. 21 (1976), pp. 293-329. | Zbl | MR
[12] ) .- Anosov flows and non-Stein symplectic manifolds, Ann. Inst. Fourier 45 (1995), pp. 1407-1421. | Zbl | MR | Numdam
[13] ) . - Torsion and critical metrics on contact three-manifolds, Kodai Math. J. 13 (1990), pp. 88-100. | Zbl | MR
[14] ) .- Tangent sphere bundles satisfying ∇ξτ = 0, J. of Geom. 49 (1994), pp. 178-188. | Zbl | MR
[15] ) . - Ergodic Theory-Introductory Lectures, Lecture Notes in Math., Springer-Verlag, Berlin, 458 (1975). | Zbl | MR
[16] ) .- On the hypothesis of Rabinowitz' periodic orbit theorem, J. Differential Equations, 33 (1978), pp. 353-358. | Zbl | MR