@article{AFST_2000_6_9_1_113_0, author = {Marco Squassina}, title = {Weak solutions to general {Euler's} equations via nonsmooth critical point theory}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {113--131}, publisher = {Universit\'e Paul Sabatier. Facult\'e des sciences}, address = {Toulouse}, volume = {Ser. 6, 9}, number = {1}, year = {2000}, zbl = {0983.35050}, mrnumber = {1815943}, language = {en}, url = {https://afst.centre-mersenne.org/item/AFST_2000_6_9_1_113_0/} }
TY - JOUR AU - Marco Squassina TI - Weak solutions to general Euler's equations via nonsmooth critical point theory JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2000 SP - 113 EP - 131 VL - 9 IS - 1 PB - Université Paul Sabatier. Faculté des sciences PP - Toulouse UR - https://afst.centre-mersenne.org/item/AFST_2000_6_9_1_113_0/ LA - en ID - AFST_2000_6_9_1_113_0 ER -
%0 Journal Article %A Marco Squassina %T Weak solutions to general Euler's equations via nonsmooth critical point theory %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2000 %P 113-131 %V 9 %N 1 %I Université Paul Sabatier. Faculté des sciences %C Toulouse %U https://afst.centre-mersenne.org/item/AFST_2000_6_9_1_113_0/ %G en %F AFST_2000_6_9_1_113_0
Marco Squassina. Weak solutions to general Euler's equations via nonsmooth critical point theory. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 9 (2000) no. 1, pp. 113-131. https://afst.centre-mersenne.org/item/AFST_2000_6_9_1_113_0/
[1] Existence and multiplicity theorems for semi-linear elliptic boundary value problems, Math. Z. 151 (1976), 281-295. | MR | Zbl
). -[2] On the existence of multiple solutions for al class of nonlinear boundary value problems, Rend. Sem. Mat. Univ. Padova 49 (1973), 195-204. | Numdam | MR | Zbl
). -[3] Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381. | MR | Zbl
) and ). -[4] Critical points for multiple integrals of the calculus of variations, Arch. Rat. Mech. Anal. 134 (1996), 249-274. | MR | Zbl
), ). -[5] Weak solutions of quasilinear elliptic PDE's at resonance, Ann. Fac. Sci. Toulouse 6 (1997), 573-589. | Numdam | MR | Zbl
), ). -[6] Topological methods for variational problems with symmetries, Springer Verlag (1993). | MR | Zbl
). -[7] Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlin. Anal. 19 (1992), 581-597. | MR | Zbl
), ). -[8] Sur une propriété des espaces de Sobolev, C. R. Acad. Sc.Paris 287 (1978), 113-115. | MR | Zbl
), ). -[9] Multiplicity of solutions for quasilinear elliptic equations, Top. Meth. Nonlin. Anal. 6 (1995), 357-370. | MR | Zbl
). -[10] On a variational approach to some quasilinear problems, Serdica Math. J. 22 (1996), 399-426. | MR | Zbl
). -[11] On a jumping problem for quasilinear elliptic equations, Math. Z. 226 (1997), 193-210. | MR | Zbl
). -[12] Nonsmooth critical point theory and quasilinear elliptic equations, Topological Methods in Differential Equations and Inclusions, 1-50 - A. Granas, M. Frigon, G. Sabidussi Eds. - Montreal (1994), NATO ASI Series - Kluwer A.P. (1995). | MR | Zbl
), ). -[13] A minimum-maximum principle for a class of nonlinear integral equations, J. Anal. Math. 22 (1969), 391-410. | MR | Zbl
). -[14] Nontrivial solutions of quasilinear equations via nonsmooth Morse theory, J. Diff. Eq. 136 (1997), 268-293. | MR | Zbl
), ). -[15] Deformation properties for continuous functionals and critical point theory, Top. Meth. Nonlin. Anal. 1 (1993), 151-171. | MR | Zbl
), ), ). -[16] A critical point theory for nonsmooth functionals, Ann. Mat. Pura Appl. (4) 167 (1994), 73-100. | MR | Zbl
), ). -[17] Metric critical point theory 1. Morse regularity and homotopic stability of a minimum, J. Math. Pures Appl. 75 (1996), 125-153. | MR | Zbl
), ). -[18] Equations aux dérivées partielles de type elliptique, Dunod, Paris, (1968). | MR | Zbl
), ). -[19] Mountain pass theorems and global homeomorphism theorems, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), 189-209. | Numdam | MR | Zbl
). -[20] Critical points for non differentiable functionals, Boll. Un. Mat. Ital. B (7) 11 (1997), 733-749. | MR | Zbl
). -[21] Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Series Math. 65 Amer. Math. Soc. Providence, R.I. (1986). | MR | Zbl
). -[22] Quasilinear elliptic eigenvalue problems, Comment. Math. Helvetici 58 (1983), 509-527. | MR | Zbl
). -