@article{AFST_2000_6_9_1_113_0,
author = {Marco Squassina},
title = {Weak solutions to general {Euler's} equations via nonsmooth critical point theory},
journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
pages = {113--131},
year = {2000},
publisher = {Universit\'e Paul Sabatier},
address = {Toulouse},
volume = {Ser. 6, 9},
number = {1},
doi = {10.5802/afst.956},
mrnumber = {1815943},
zbl = {0983.35050},
language = {en},
url = {https://afst.centre-mersenne.org/articles/10.5802/afst.956/}
}
TY - JOUR AU - Marco Squassina TI - Weak solutions to general Euler's equations via nonsmooth critical point theory JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2000 SP - 113 EP - 131 VL - 9 IS - 1 PB - Université Paul Sabatier PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.956/ DO - 10.5802/afst.956 LA - en ID - AFST_2000_6_9_1_113_0 ER -
%0 Journal Article %A Marco Squassina %T Weak solutions to general Euler's equations via nonsmooth critical point theory %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2000 %P 113-131 %V 9 %N 1 %I Université Paul Sabatier %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.956/ %R 10.5802/afst.956 %G en %F AFST_2000_6_9_1_113_0
Marco Squassina. Weak solutions to general Euler's equations via nonsmooth critical point theory. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 9 (2000) no. 1, pp. 113-131. doi: 10.5802/afst.956
[1] ). - Existence and multiplicity theorems for semi-linear elliptic boundary value problems, Math. Z. 151 (1976), 281-295. | Zbl | MR
[2] ). - On the existence of multiple solutions for al class of nonlinear boundary value problems, Rend. Sem. Mat. Univ. Padova 49 (1973), 195-204. | Numdam | Zbl | MR
[3] ) and ). - Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381. | Zbl | MR
[4] ), ). - Critical points for multiple integrals of the calculus of variations, Arch. Rat. Mech. Anal. 134 (1996), 249-274. | Zbl | MR
[5] ), ). - Weak solutions of quasilinear elliptic PDE's at resonance, Ann. Fac. Sci. Toulouse 6 (1997), 573-589. | Numdam | Zbl | MR
[6] ). - Topological methods for variational problems with symmetries, Springer Verlag (1993). | Zbl | MR
[7] ), ). - Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlin. Anal. 19 (1992), 581-597. | Zbl | MR
[8] ), ). - Sur une propriété des espaces de Sobolev, C. R. Acad. Sc.Paris 287 (1978), 113-115. | Zbl | MR
[9] ). - Multiplicity of solutions for quasilinear elliptic equations, Top. Meth. Nonlin. Anal. 6 (1995), 357-370. | Zbl | MR
[10] ). - On a variational approach to some quasilinear problems, Serdica Math. J. 22 (1996), 399-426. | Zbl | MR
[11] ). - On a jumping problem for quasilinear elliptic equations, Math. Z. 226 (1997), 193-210. | Zbl | MR
[12] ), ). - Nonsmooth critical point theory and quasilinear elliptic equations, Topological Methods in Differential Equations and Inclusions, 1-50 - A. Granas, M. Frigon, G. Sabidussi Eds. - Montreal (1994), NATO ASI Series - Kluwer A.P. (1995). | Zbl | MR
[13] ). - A minimum-maximum principle for a class of nonlinear integral equations, J. Anal. Math. 22 (1969), 391-410. | Zbl | MR
[14] ), ). - Nontrivial solutions of quasilinear equations via nonsmooth Morse theory, J. Diff. Eq. 136 (1997), 268-293. | Zbl | MR
[15] ), ), ). - Deformation properties for continuous functionals and critical point theory, Top. Meth. Nonlin. Anal. 1 (1993), 151-171. | Zbl | MR
[16] ), ). - A critical point theory for nonsmooth functionals, Ann. Mat. Pura Appl. (4) 167 (1994), 73-100. | Zbl | MR
[17] ), ). - Metric critical point theory 1. Morse regularity and homotopic stability of a minimum, J. Math. Pures Appl. 75 (1996), 125-153. | Zbl | MR
[18] ), ). - Equations aux dérivées partielles de type elliptique, Dunod, Paris, (1968). | Zbl | MR
[19] ). - Mountain pass theorems and global homeomorphism theorems, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), 189-209. | Numdam | Zbl | MR
[20] ). - Critical points for non differentiable functionals, Boll. Un. Mat. Ital. B (7) 11 (1997), 733-749. | Zbl | MR
[21] ). - Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Series Math. 65 Amer. Math. Soc. Providence, R.I. (1986). | Zbl | MR
[22] ). - Quasilinear elliptic eigenvalue problems, Comment. Math. Helvetici 58 (1983), 509-527. | Zbl | MR
Cité par Sources :