@article{AFST_2000_6_9_3_467_0, author = {Albert Milani}, title = {On singular perturbations for quasilinear {IBV} problems}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {467--486}, publisher = {Universit\'e Paul Sabatier. Facult\'e des sciences}, address = {Toulouse}, volume = {Ser. 6, 9}, number = {3}, year = {2000}, zbl = {0989.35021}, mrnumber = {1842028}, language = {en}, url = {https://afst.centre-mersenne.org/item/AFST_2000_6_9_3_467_0/} }
TY - JOUR AU - Albert Milani TI - On singular perturbations for quasilinear IBV problems JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2000 SP - 467 EP - 486 VL - 9 IS - 3 PB - Université Paul Sabatier. Faculté des sciences PP - Toulouse UR - https://afst.centre-mersenne.org/item/AFST_2000_6_9_3_467_0/ LA - en ID - AFST_2000_6_9_3_467_0 ER -
%0 Journal Article %A Albert Milani %T On singular perturbations for quasilinear IBV problems %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2000 %P 467-486 %V 9 %N 3 %I Université Paul Sabatier. Faculté des sciences %C Toulouse %U https://afst.centre-mersenne.org/item/AFST_2000_6_9_3_467_0/ %G en %F AFST_2000_6_9_3_467_0
Albert Milani. On singular perturbations for quasilinear IBV problems. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 9 (2000) no. 3, pp. 467-486. https://afst.centre-mersenne.org/item/AFST_2000_6_9_3_467_0/
[1] Partial Differential Equations of Parabolic Type. Krieger, Malabar, FL 1983.
). -[2] Abstract Differential Equations and Nonlinear Mixed Problems. Fermian Lectures, Pisa, 1985. | MR | Zbl
). -[3] Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Dunod, Paris, 1969. | MR | Zbl
). -[4] Non-Homogeneous Boundary value Problems, Vol. I. Springer Verlag, New York, 1972. | Zbl
), ). -[5] Non-Homogeneous Boundary value Problems, Vol. II. Springer Verlag, New York, 1972. | Zbl
), ). -[6] Global Existence and Asymptotics of the Solutions of Second Order Quasilinear Hyperbolic Equations with First Order Dissipation term. , Publ. RIMS Kyoto Univ., 13, 349-379 (1977). | MR | Zbl
). -[7] Long Time Existence and Singular Perturbation Results for Quasilinear Hyperbolic Equations with Small Parameter and Dissipation Term. Non Linear An. TMA, 10/11 (1986), 1237-1248. | MR | Zbl
). -[8] Global Existence via Singular Perturbations for Quasilinear Evolution Equations. Adv. Math. Sci. Appl., 6/2 (1996), 419-444. | MR | Zbl
). -[9] A Remark on the Sobolev Regularity of Classical Solutions to Uniformly Parabolic Equations. Math. Nachr., 199 (1999), 115-144. | MR | Zbl
). -[10] On the Construction of Compatible Data for Hyperbolic-Parabolic Initial-Boundary Value Problems. Rend. Sem. Mat. Univ. Trieste, 29 (1997), 167-188. | MR | Zbl
). -[11] On the Diffusion Phenomenon of Quasilinear Hyperbolic Flows. To appear on Bull. Sc. Math.
), ). -[12] Global Existence via Singular Perturbations for Quasilinear Evolution Equations: the Initial-Boundary Value Problem. Preprint, 1999. | MR
). -[13] Sobolev Regularity for t > 0 in Quasilinear Parabolic Equations. Preprint, 1999. | MR
). -[14] Lectures on Nonlinear Evolution Equations. Vieweg, Braunschweig, 1992. | MR | Zbl
). -