@article{AFST_2003_6_12_2_179_0, author = {Vi\^et Anh Nguy\^en and El Hassan Youssfi}, title = {Optimal {Lipschitz} estimates for the $\overline{\partial }$ equation on a class of convex domains}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {179--243}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 12}, number = {2}, year = {2003}, mrnumber = {2123255}, language = {en}, url = {https://afst.centre-mersenne.org/item/AFST_2003_6_12_2_179_0/} }
TY - JOUR AU - Viêt Anh Nguyên AU - El Hassan Youssfi TI - Optimal Lipschitz estimates for the $\overline{\partial }$ equation on a class of convex domains JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2003 SP - 179 EP - 243 VL - 12 IS - 2 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/item/AFST_2003_6_12_2_179_0/ LA - en ID - AFST_2003_6_12_2_179_0 ER -
%0 Journal Article %A Viêt Anh Nguyên %A El Hassan Youssfi %T Optimal Lipschitz estimates for the $\overline{\partial }$ equation on a class of convex domains %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2003 %P 179-243 %V 12 %N 2 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/item/AFST_2003_6_12_2_179_0/ %G en %F AFST_2003_6_12_2_179_0
Viêt Anh Nguyên; El Hassan Youssfi. Optimal Lipschitz estimates for the $\overline{\partial }$ equation on a class of convex domains. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 12 (2003) no. 2, pp. 179-243. https://afst.centre-mersenne.org/item/AFST_2003_6_12_2_179_0/
[1] A formula for interpolation and division in Cn, Math. Ann. 263, p. 399-418 (1983). | MR | Zbl
-[2] Solutions de l'équation ∂ et zéros de la classe de Nevanlinna dans certains domaines faiblement pseudo-convexes , Ann. Inst. Fourier. 32(4), p. 53-89 (1982). | Numdam | MR | Zbl
and -[3] Formules explicites pour les solutions minimales de l'équation ∂u = f dans la boule et dans le polydisque de Cn, Ann. Inst. Fourier. 30(4), p. 121-154 (1980). | Numdam | MR | Zbl
-[4] Optimal Lp estimates for the ∂ equation on complex ellipsoids in Cn, Manuscripta math. 80, p. 131-149 (1993). | MR | Zbl
, and -[5] Estimées Lipschitz optimales dans les convexes de type fini, C. R. Acad. Sci. Paris 325, p. 1077-1080 (1997). | MR | Zbl
-[6] Sharp estimates for ∂ on convex domains of finite type, Ark. Mat. 39, p. 1-25 (2001). | MR | Zbl
-[7] Hõlder estimates on convex domains of finite type, Math. Z. 232, p. 43-61 (1999). | Zbl
, and -[8] Lp estimates on convex domains of finite type, Math. Z. 236, p. 401-418 (2001). | MR | Zbl
. -[9] Estimates for the ∂-Neumann problem", Mathematical Notes 19, Princeton University Press, (1977 ). | MR | Zbl
and - "[10] Hõlder and LP estimates for ∂ on convex domains of finite type depending on Catlin's multitype, Math. Z. 242, p. 367-398 (2002). | Zbl
-[11] Optimal Lipschitz and LP regularity for the equation ∂u = f on strongly pseudo-convex domains, Math. Annalen. 219, p. 233-260 (1976). | MR | Zbl
-[12] Estimates for integral kernels of mixed type, fractional integration operators, and optimal estimates for the ∂ operator, Manuscripta math. 30, p. 21-52 (1979). | MR | Zbl
-[13] Characterizations of various domains of holomorphy via ∂ estimates and applications to a problem of Kohn, Illinois. Journal Math. 23(2), p. 267-285 (1979). | MR | Zbl
-[14] Entire functions of several complex variables", Grundlehren der Mathematischen Wissenschaften 282, Springer-Verlag, (1986). | MR | Zbl
and - "[15] The weighted Bergman projection and related theory on the minimal ball, Bull. Sci. math. 123, p. 501-525 (1999). | MR | Zbl
and -[16] Function theory in the unit ball of Cn ", Grundlehren der Mathematischen Wissenschaften 241, Springer-Verlag, New York-Berlin, 1980. | MR | Zbl
- "[17] Fatou and Korányi-Vági type theorems on the minimal balls, Publ. Mat. 46, 49-75 (2002). | MR | Zbl
-[18] Lipschitz estimates for the ∂-equation on the minimal ball, Michigan Math. J. 49, p. 299-323 (2001). | MR | Zbl
and -[19] Estimations Lipschitziennes optimales pour l'équation ∂ dans une classe de domaines convexes, C. R. Acad. Sci. Paris t. 332, Série I, p. 1065-1070 (2001). | MR | Zbl
and -[20] Proper holomorphic liftings and new formulas for the Bergman and Szegõ kernels, Stud. Math. 152, 161-186 (2002). | Zbl
-