@article{AFST_2005_6_14_3_395_0, author = {Alexei G. Gorinov}, title = {Real cohomology groups of the space of nonsingular curves of degree 5 in $\mathbb {CP}^{2}$}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {395--434}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 14}, number = {3}, year = {2005}, zbl = {1088.55012}, mrnumber = {2172585}, language = {en}, url = {https://afst.centre-mersenne.org/item/AFST_2005_6_14_3_395_0/} }
TY - JOUR AU - Alexei G. Gorinov TI - Real cohomology groups of the space of nonsingular curves of degree 5 in $\mathbb {CP}^{2}$ JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2005 SP - 395 EP - 434 VL - 14 IS - 3 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/item/AFST_2005_6_14_3_395_0/ LA - en ID - AFST_2005_6_14_3_395_0 ER -
%0 Journal Article %A Alexei G. Gorinov %T Real cohomology groups of the space of nonsingular curves of degree 5 in $\mathbb {CP}^{2}$ %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2005 %P 395-434 %V 14 %N 3 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/item/AFST_2005_6_14_3_395_0/ %G en %F AFST_2005_6_14_3_395_0
Alexei G. Gorinov. Real cohomology groups of the space of nonsingular curves of degree 5 in $\mathbb {CP}^{2}$. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 14 (2005) no. 3, pp. 395-434. https://afst.centre-mersenne.org/item/AFST_2005_6_14_3_395_0/
[1] On some topological invariants of algebraic functions , Transact. (Trudy) of Moscow Math. Society , 21, p. 27-46, 1970. | MR
-[2] How to calculate homology groups of spaces of nonsingular algebraic projective hypersurfaces in CPn, Proc. Steklov Math. Inst., vol. 225, p. 121-140, 1999. | MR | Zbl
-[3] Topology of complements of discriminants , Phasis, Moscow, 1997 (in Russian).
-[4] Degeneration of the Leray spectral sequence for certain geometric quotients, Moscow Math. J. , Vol. 3, n° 3, 2003, p. 1085-1095. | Zbl
, -[5] Basic Algebraic Geometry 1, Springer-Verlag, Berlin, 1994. | MR | Zbl
-