logo AFST
Vertex algebroids à la Beilinson-Drinfeld
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 25 (2016) no. 2-3, pp. 205-234.

Ces notes informelles sont une introduction aux algébroïdes vertex en suivant les lignes suggérées par Beilinson et Drinfeld.

These informal notes are an introduction to vertex algebroids along the lines suggested by Beilinson and Drinfeld.

Publié le : 2016-07-11
DOI : https://doi.org/10.5802/afst.1494
@article{AFST_2016_6_25_2-3_205_0,
     author = {Fyodor Malikov},
     title = {Vertex algebroids \`a la Beilinson-Drinfeld},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {6e s{\'e}rie, 25},
     number = {2-3},
     year = {2016},
     pages = {205-234},
     doi = {10.5802/afst.1494},
     language = {fr},
     url = {afst.centre-mersenne.org/item/AFST_2016_6_25_2-3_205_0/}
}
Fyodor Malikov. Vertex algebroids à la Beilinson-Drinfeld. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 25 (2016) no. 2-3, pp. 205-234. doi : 10.5802/afst.1494. https://afst.centre-mersenne.org/item/AFST_2016_6_25_2-3_205_0/

[1] Arakawa (T.), Chebotarov (D.), Malikov (F.).— ‘Algebras of twisted chiral differential operators and affine localization of g-modules”, Selecta Math. New Series, Vol. 17 Issue 1, p. 1-46 (2011).

[2] Arakawa (T.), Malikov (F.).— “A chiral Borel-Weil-Bott theorem”, Adv. in Math. Vol. 229, Issue 5, p. 2908-2949 (2012).

[3] Arkhipov (S.), Gaitsgory (D.).— Differential operators on the loop group via chiral algebras,Int. Math. Res. Not. no. 4, p. 165-210 (2002).

[4] Bakalov (B.), Kac (V.G.), Voronov (A.A.).— Cohomology of conformal algebras. Comm. Math. Phys., 200 (1999), pp. 561-598.

[5] Beilinson (A.), Drinfeld (V.).— Chiral algebras. American Mathematical Society Colloquium Publications, 51. American Mathematical Society, Providence, RI, 2004. vi+375 pp. ISBN : 0-8218-3528-9

[6] Borel (A.) et al..— Algebraic D-modules Academic Press, Inc. (1987).

[7] Borcherds (R.E.).— « Vertex algebras, Kac-Moody algebras, and the Monster. » Proceedings of the National Academy of Sciences 83.10 p. 3068-3071 (1986).

[8] Frenkel (E.), Ben-Zvi (D.).— Vertex algebras and algebraic curves. Second edition. Mathematical Surveys and Monographs, 88. American Mathematical Society, Providence, RI (2004).

[9] Gorbounov (V.), Malikov (F.), Schechtman (V.).— Gerbes of chiral differential operators. II. Vertex algebroids, Invent. Math. 155., no. 3, p. 605-680 (2004).

[10] Heluani (R.).— Supersymmetry of the chiral de Rham complex. II. Commuting sectors, Int. Math. Res. Not. 2009, no. 6, p. 953-987.

[11] Hinich (V.).— unpublished manuscript.

[12] Huang (Yi.-Z.), Lepowski (J.).— On the D-module and formal variable approach to vertex operator algebras, in : Topics in geometry, p.175-202, Birkhäuser, Boston (1996).

[13] Kac (V.).— Vertex algebras for beginners. University Lecture Series, 10. American Mathematical Society, Providence, RI (1997). viii+141 pp. ISBN : 0-8218-0643-2

[14] Lada (T.), Markl (M.).— Strongly homotopy Lie algebras, Comm. in Algebra Vol. 23, Issue 6, p. 2147-2161 (1995).

[15] Linshaw (A.), Mathai (V.).— Twisted chiral de Rham complex, generalized geometry, and T-duality, posted on : arXiv :1412.0166

[16] Lada (T.) and Stasheff (J.).— Introduction to sh Lie algebras for physicists. International Journal of Theoretical Physics Vol. 32, No. 7, p. 1087-1103 (1993).

[17] Malikov (F.), Schechtman (V.), Vaintrob (A.).— Chiral de Rham complex, Comm. in Math. Phys. 204, p. 439-473 (1999).