logo AFST
Refined composite invariants of torus knots via DAHA
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 25 (2016) no. 2-3, pp. 433-471.

Nous définissons les DAHA-superpolynômes composites associés aux nœuds toriques, en fonction des paires de diagrammes de Young qui généralisent les polynômes de HOMFLY-PT composites dans la théorie de skein de l’anneau. Nous donnons divers exemples. Nos superpolynômes étendent les polynômes (raffinés) de DAHA-Jones et satisfont toutes les symétries standards des DAHA-superpolynômes des nœuds toriques. Ces derniers sont conjecturalement liés à l’homologie de HOMFLY-PT. À la fin, nous construisons deux DAHA-hyperpolynômes en étendant les polynômes de DAHA-Jones de type E. Ils sont étroitement liés à l’approche de Deligne-Gross des systèmes de racines exceptionnels ; ce thème est de nature expérimentale.

We define composite DAHA-superpolynomials of torus knots, depending on pairs of Young diagrams and generalizing the composite HOMFLY-PT polynomials in the skein theory of the annulus. We provide various examples. Our superpolynomials extend the DAHA-Jones (refined) polynomials and satisfy all standard symmetries of the DAHA-superpolynomials of torus knots. The latter are conjecturally related to the HOMFLY-PT homology. At the end, we construct two DAHA-hyperpolynomials extending the DAHA-Jones polynomials of type E closely related to the Deligne-Gross approach to the exceptional root systems; this theme is of experimental nature.

Publié le : 2016-07-11
DOI : https://doi.org/10.5802/afst.1501
@article{AFST_2016_6_25_2-3_433_0,
     author = {Ivan Cherednik and Ross Elliot},
     title = {Refined composite invariants of torus knots via DAHA},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 25},
     number = {2-3},
     year = {2016},
     pages = {433-471},
     doi = {10.5802/afst.1501},
     language = {en},
     url = {afst.centre-mersenne.org/item/AFST_2016_6_25_2-3_433_0/}
}
Ivan Cherednik; Ross Elliot. Refined composite invariants of torus knots via DAHA. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 25 (2016) no. 2-3, pp. 433-471. doi : 10.5802/afst.1501. https://afst.centre-mersenne.org/item/AFST_2016_6_25_2-3_433_0/

[1] Aiston (A.K.), and Morton (H.).— Idempotents of Hecke algebras of type A, J. Knot Theory Ramif. 7, p. 463-487; arXiv:math.QA/9702017 (1998).

[2] Chen (L.), and Chen (Q.).— Orthogonal Quantum Group Invariants Of Links, arXiv: 1007.1656v1 (2010).

[3] Cherednik (I.).— DAHA-Jones polynomials of torus knots, arXiv: 1406.3959 [math.QA] (2014).

[4] Cherednik (I.) Jones polynomials of torus knots via DAHA, arXiv: 1111.6195v6 [math.QA] (2012).

[5] Cherednik (I.) Double affine Hecke algebras, London Mathematical Society Lecture Note Series, 319, Cambridge University Press, Cambridge, (2006).

[6] Cherednik (I.), and Danilenko (I.).— DAHA and iterated torus knots, arXiv: 1408.4348 (2014).

[7] Deligne (P.), and Gross (B.).— On the exceptional series, and its descendants, Comptes Rendus Acad. Sci. Paris, Ser I, 335 (2002), 877-881.

[8] Dunfield (N.), and Gukov (S.).— and J. Rasmussen, The superpolynomial for knot homologies, Experimental Mathematics, 15:2 (2006), 129-159.

[9] Garoufalidis (S.), and Morton (H.), and Vuong (T.).— The SL 3 colored Jones polynomial of the trefoil, arXiv:1010.3147v4 [math.GT] (2010).

[10] Gorsky (E.), and Negut (A.).— Refined knot invariants and Hilbert schemes, arXiv: 1304.3328v2 (2013).

[11] Gu (J.), and Jockers (H.), and Klemm (A.), and Soroush (M.).— Knot invariants from topological recursion on augmentation varieties, arXiv: 1401.5095v1 [hep-th] (2014).

[12] Gukov (S.), and Stosic (M.).— Homological algebra of knots and BPS states, arXiv: 1112.0030v1 [hep-th] (2011).

[13] Hadji (R.), and Morton (H.).— A basis for the full HOMFLY-PT skein of the annulus, Math. Proc. Camb. Philos. Soc. 141, p. 81-100 (2006).

[14] Khovanov (M.).— Triply-graded link homology and Hochschild homology of Soergel bimodules, International J. of Math. 18, p. 869–885 (2007).

[15] Khovanov (M.), and Rozansky (L.).— Matrix factorizations and link homology, Fundamenta Mathematicae, 199, p. 1-91 (2008).

[16] Khovanov (M.), and Rozansky (L.).— Matrix factorizations and link homology II, Geometry and Topology, 12, p. 1387-1425 (2008).

[17] Koike (K.).— On the decomposition of tensor products of the representations of the classical groups: by means of the universal character, Adv. Math. 74:1 p. 57–86 (1989).

[18] Lin (X. S.), and Zheng (H.).— On the Hecke algebra and the colored HOMFLY-PT polynomial, Trans. Amer. Math. Soc. 362, p. 1-18 (2010), arXiv: math.QA/0601267 (2006).

[19] Mariño (M.).— Chern-Simons theory and topological strings, Rev.Mod.Phys. 77 p. 675-720 (2005).

[20] Manchon (P.M.G.), and Morton (H.).— Geometrical relations and plethysms in the HOMFLY-PT skein of the annulus, J. London Math. Soc. 78, p. 305-328 (2008); arXiv: math.GT/0707.2851 (2007).

[21] Paul (C.), Borhade (P.), and Ramadevi (P.).— Composite invariants and unoriented topological string amplitudes, arXiv: 1003.5282v2 [hep-th] (2010).

[22] Queffelec (H.), and Rose (D.).— The 𝔰𝔩 n foam 2-category: a combinatorial formulation of Khovanov-Rozansky homology via categorical skew Howe duality, arXiv: 1405.5920 (2014).

[23] Rosso (M.), and Jones (V. F. R.).— On the invariants of torus knots derived from quantum groups, Journal of Knot Theory and its Ramifications, 2, p. 97-112 (1993).

[24] Rouquier (R.).— Khovanov-Rozansky homology and 2-braid groups, arXiv: 1203.5065 (2012).

[25] The Sage – Combinat community.— Sage – Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics, Site: http://combinat.sagemath.org, (2008).

[26] Schiffmann (O.), and Vasserot (E.).— The elliptic Hall algebra, Cherednik Hecke algebras and Macdonald polynomials, Compos. Math. 147, p. 188-234 (2011).

[27] Stevan (S.).— Chern-Simons invariants of torus links, arXiv: 1003.2861v2 [hep-th] (2010).

[28] Webster (B.).— Knot invariants and higher representation theory, arXiv: 1309.3796 (2013).