logo AFST
Diffusions with polynomial eigenvectors via finite subgroups of O(3)
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 25 (2016) no. 2-3, pp. 683-721.

We provide new examples of diffusion operators in dimension 2 and 3 which have orthogonal polynomials as eigenvectors. Their construction relies on the finite subgroups of O(3) and their invariant polynomials.

Publié le : 2016-07-11
DOI : https://doi.org/10.5802/afst.1508
@article{AFST_2016_6_25_2-3_683_0,
     author = {Dominique Bakry and Xavier Bressaud},
     title = {Diffusions with polynomial eigenvectors via finite subgroups of $O(3)$},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 25},
     number = {2-3},
     year = {2016},
     pages = {683-721},
     doi = {10.5802/afst.1508},
     language = {en},
     url = {afst.centre-mersenne.org/item/AFST_2016_6_25_2-3_683_0/}
}
Dominique Bakry; Xavier Bressaud. Diffusions with polynomial eigenvectors via finite subgroups of $O(3)$. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 25 (2016) no. 2-3, pp. 683-721. doi : 10.5802/afst.1508. https://afst.centre-mersenne.org/item/AFST_2016_6_25_2-3_683_0/

[1] Bakry (D.), Gentil (I.), and Ledoux (M.).— Analysis and Geometry of Markov Diffusion Operators, Grund. Math. Wiss., vol. 348, Springer, Berlin (2013).

[2] Bakry (D.) and Mazet (O.).— Characterization of Markov semigroups on R associated to some families of orthogonal polynomials, Séminaire de Probabilités XXXVII, Lecture Notes in Math., vol. 1832, Springer, Berlin, p. 60-80 (2003). MR MR2053041

[3] Bakry (D.), Orevkov (S.), and Zani (M.).— Orthogonal polynomials and diffusions operators.

[4] Meyer (B.).— On the symmetries of spherical harmonics, Canadian J. Math. 6, p. 135-157 (1954).

[5] Smith (L.).— Polynomial invariants of finite groups, Research Notes in Mathematics, vol. 6, A K Peters, Ltd., Wellesley, MA (1995).

[6] Smith (L.).— Polynomial invariants of finite groups. A survey of recent developments, Bull. Amer. Math. Soc. (N.S.) 34, no. 3, p. 211-250 (1997).

[7] Stanley (R. P.).— Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc. (N.S.) 1, no. 3, p. 475-511 (1979).