logo AFST
Liberation theory for noncommutative homogeneous spaces
Teodor Banica
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 26 (2017) no. 1, p. 127-156

We discuss the liberation question, in the homogeneous space setting. Our first series of results concerns the axiomatization and classification of the families of compact quantum groups G=(G N ) which are “uniform”, in a suitable sense. We study then the quotient spaces of type X=(G M ×G N )/(G L ×G M-L ×G N-L ), and the liberation operation for them, with a number of algebraic and probabilistic results.

On étudie le problème de liberation, dans le cadre des espaces homogènes. Notre première série de résultats concerne l’axiomatisation et la classification des familles de groupes quantiques compacts G=(G N ) qui sont « uniformes », dans un sens convenable. On étudie ensuite les espaces quotient du type X=(G M ×G N )/(G L ×G M-L ×G N-L ), et l’opération de liberation pour ces espaces, avec des résultats de nature algébrique et probabiliste.

Received : 2015-12-14
Accepted : 2016-03-07
Published online : 2017-02-07
DOI : https://doi.org/10.5802/afst.1527
Classification:  46L65,  46L54
Keywords: Liberation theory, Homogeneous space
@article{AFST_2017_6_26_1_127_0,
     author = {Teodor Banica},
     title = {Liberation theory for noncommutative homogeneous spaces},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 26},
     number = {1},
     year = {2017},
     pages = {127-156},
     doi = {10.5802/afst.1527},
     language = {en},
     url = {https://afst.centre-mersenne.org/item/AFST_2017_6_26_1_127_0}
}
Banica, Teodor. Liberation theory for noncommutative homogeneous spaces. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 26 (2017) no. 1, pp. 127-156. doi : 10.5802/afst.1527. afst.centre-mersenne.org/item/AFST_2017_6_26_1_127_0/

[1] Teodor Banica Liberations and twists of real and complex spheres, J. Geom. Phys., Tome 96 (2015), pp. 1-25 | Article

[2] Teodor Banica The algebraic structure of quantum partial isometries, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Tome 19 (2016) no. 1 (Article ID 1650003, 36 p.) | Article

[3] Teodor Banica A duality principle for noncommutative cubes and spheres, J. Noncommut. Geom., Tome 10 (2016) no. 3, pp. 1043-1081 | Article

[4] Teodor Banica; Serban Teodor Belinschi; Mireille Capitaine; Benoît Collins Free Bessel laws, Can. J. Math., Tome 63 (2011) no. 1, pp. 3-37 | Article

[5] Teodor Banica; Julien Bichon; Benoît Collins The hyperoctahedral quantum group, J. Ramanujan Math. Soc., Tome 22 (2007) no. 4, pp. 345-384

[6] Teodor Banica; Debashish Goswami Quantum isometries and noncommutative spheres, Commun. Math. Phys., Tome 298 (2010) no. 2, pp. 343-356 | Article

[7] Teodor Banica; Adam Skalski; Piotr Sołtan Noncommutative homogeneous spaces: the matrix case, J. Geom. Phys., Tome 62 (2012) no. 6, pp. 1451-1466 | Article

[8] Teodor Banica; Roland Speicher Liberation of orthogonal Lie groups, Adv. Math., Tome 222 (2009) no. 4, pp. 1461-1501 | Article

[9] Hari Bercovici; Vittorino Pata Stable laws and domains of attraction in free probability theory, Ann. Math., Tome 149 (1999) no. 3, pp. 1023-1060 | Article

[10] Florin P. Boca Ergodic actions of compact matrix pseudogroups on C * -algebras, Recent advances in operator algebras. Collection of talks given in the conference on operator algebras held in Orléans, France in July 1992 (Astérisque) Tome 232, Société Mathématique de France, 1995, pp. 93-109

[11] Alexandru Chirvasitu Quantum rigidity of negatively curved manifolds (2015) (https://arxiv.org/abs/1503.07984)

[12] Benoît Collins; Piotr Śniady Integration with respect to the Haar measure on the unitary, orthogonal and symplectic group, Commun. Math. Phys., Tome 264 (2006) no. 3, pp. 773-795 | Article

[13] Stephen Curran; Roland Speicher Quantum invariant families of matrices in free probability, J. Funct. Anal., Tome 261 (2011) no. 4, pp. 897-933 | Article

[14] Kenny De Commer; Makoto Yamashita Tannaka–Krein duality for compact quantum homogeneous spaces. I. General theory, Theory Appl. Categ., Tome 28 (2013), pp. 1099-1138 (electronic only)

[15] Amaury Freslon On the partition approach to Schur-Weyl duality and free quantum groups (2014) (https://arxiv.org/abs/1409.1346v1)

[16] Debashish Goswami; Soumalya Joardar Rigidity of action of compact quantum groups on compact, connected manifolds (2013) (https://arxiv.org/abs/1309.1294v1)

[17] Igor Klep; Victor Vinnikov; Jurij Volčič Null- and Positivstellensätze for rationally resolvable ideals (2015) (https://arxiv.org/abs/1504.08004)

[18] Claus Köstler; Roland Speicher A noncommutative de Finetti theorem: invariance under quantum permutations is equivalent to freeness with amalgamation, Commun. Math. Phys., Tome 291 (2009) no. 2, pp. 473-490 | Article

[19] Sara Malacarne Woronowicz’s Tannaka-Krein duality and free orthogonal quantum groups (2016) (https://arxiv.org/abs/1602.04807)

[20] Sergey Neshveyev; Lars Tuset Compact quantum groups and their representation categories, Cours Spécialisés (Paris), Tome 20, Société Mathématique de France, 2013, iv+169 pages

[21] Alexandru Nica; Roland Speicher Lectures on the combinatorics of free probability, London Mathematical Society Lecture Note Series, Tome 335, Cambridge University Press, 2006, xv+417 pages

[22] Piotr Podleś Quantum spheres., Lett. Math. Phys., Tome 14 (1987), pp. 193-202 | Article

[23] Piotr Podleś Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU(2) and SO(3) groups, Commun. Math. Phys., Tome 170 (1995) no. 1, pp. 1-20 | Article

[24] Sven Raum Isomorphisms and fusion rules of orthogonal free quantum groups and their complexifications, Proc. Am. Math. Soc., Tome 140 (2012) no. 9, pp. 3207-3218 | Article

[25] Sven Raum; Moritz Weber The full classification of orthogonal easy quantum groups, Commun. Math. Phys., Tome 341 (2016) no. 3, pp. 751-779 | Article

[26] Piotr Sołtan On actions of compact quantum groups., Ill. J. Math., Tome 55 (2011) no. 3, pp. 953-962

[27] Roland Speicher Multiplicative functions on the lattice of non-crossing partitions and free convolution, Math. Ann., Tome 298 (1994) no. 4, pp. 611-628 | Article

[28] Pierre Tarrago; Moritz Weber The classification of tensor categories of two-colored noncrossing partitions (2015) (https://arxiv.org/abs/1509.00988)

[29] Pierre Tarrago; Moritz Weber Unitary Easy Quantum Groups: the free case and the group case (2015) (https://arxiv.org/abs/1512.00195)

[30] Dan V. Voiculescu; Kenneth J. Dykema; Alexandru Nica Free random variables. A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups, CRM Monograph Series, Tome 1, American Mathematical Society, 1992, v+70 pages

[31] Shuzhou Wang Free products of compact quantum groups, Commun. Math. Phys., Tome 167 (1995) no. 3, pp. 671-692 | Article

[32] Shuzhou Wang Quantum symmetry groups of finite spaces, Commun. Math. Phys., Tome 195 (1998) no. 1, pp. 195-211 | Article

[33] Moritz Weber On the classification of easy quantum groups, Adv. Math., Tome 245 (2013), pp. 500-533 | Article

[34] Don Weingarten Asymptotic behavior of group integrals in the limit of infinite rank, J. Math. Phys., Tome 19 (1978), pp. 999-1001 | Article

[35] Stanisław Lech Woronowicz Compact matrix pseudogroups., Commun. Math. Phys., Tome 111 (1987), pp. 613-665 | Article

[36] Stanisław Lech Woronowicz Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups, Invent. Math., Tome 93 (1988) no. 1, pp. 35-76 | Article