Les marches aléatoires en environnement de Dirichlet (RWDE) correspondent à des marches alétoires en environnement aléatoire dont les probabilités de transition en chaque site sont indépendantes et distribuées suivant une même loi de Dirichlet. Le modèle est donc paramétré par une famille de poids , un pour chaque direction dirigée de . Dans ce cas, la loi moyennée est celle de la marche renforcée avec renforcement linéaire sur les arêtes orientées. Les RWDE ont une propriété remarquable d’invariance en loi par retournement du temps, de laquelle découlent plusieurs résultats encore inaccessibles dans le cas général, comme la propriété d’équivalence des points de vue statiques et dynamiques ou comme la caractérisation des régimes de transience directionnelle et de ballisticité. Dans cet article, nous présentons les développements récents sur ce modèle et donnons plusieurs esquisses de démonstrations mettant en relief les arguments centraux du sujet. Nous présentons aussi des calculs nouveaux sur la fonction de taux des grandes déviations dans le cas unidimensionnel.
Random Walks in Dirichlet Environment (RWDE) correspond to Random Walks in Random Environment (RWRE) on where the transition probabilities are i.i.d. at each site with a Dirichlet distribution. Hence, the model is parametrized by a family of positive weights , one for each oriented direction of . In this case, the annealed law is that of a reinforced random walk, with linear reinforcement on directed edges. RWDE have a remarkable property of statistical invariance by time reversal from which can be inferred several properties that are still inaccessible for general environments, such as the equivalence of static and dynamic points of view and a description of the directionally transient and ballistic regimes. In this paper we review the recent developments on this model and give several sketches of proofs presenting the core of the arguments. We also present new computations of the large deviation rate function for one dimensional RWDE.
Mots-clés : Random walk in random environment, Dirichlet distribution, Reinforced random walks, invariant measure viewed from the particle
Christophe Sabot 1 ; Laurent Tournier 2
@article{AFST_2017_6_26_2_463_0, author = {Christophe Sabot and Laurent Tournier}, title = {Random walks in {Dirichlet} environment: an overview}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {463--509}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 26}, number = {2}, year = {2017}, doi = {10.5802/afst.1542}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1542/} }
TY - JOUR AU - Christophe Sabot AU - Laurent Tournier TI - Random walks in Dirichlet environment: an overview JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2017 SP - 463 EP - 509 VL - 26 IS - 2 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1542/ DO - 10.5802/afst.1542 LA - en ID - AFST_2017_6_26_2_463_0 ER -
%0 Journal Article %A Christophe Sabot %A Laurent Tournier %T Random walks in Dirichlet environment: an overview %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2017 %P 463-509 %V 26 %N 2 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1542/ %R 10.5802/afst.1542 %G en %F AFST_2017_6_26_2_463_0
Christophe Sabot; Laurent Tournier. Random walks in Dirichlet environment: an overview. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 26 (2017) no. 2, pp. 463-509. doi : 10.5802/afst.1542. https://afst.centre-mersenne.org/articles/10.5802/afst.1542/
[1] The max-flow min-cut theorem for countable networks, J. Comb. Theory, Volume 101 (2011) no. 1, pp. 1-17 | DOI
[2] Localization for linearly edge reinforced random walks, Duke Math. J., Volume 163 (2014) no. 5, pp. 889-921 | DOI
[3] Random-walk in Beta-distributed random environment (2015) (https://arxiv.org/abs/1503.04117)
[4] Local limit theorem and equivalence of dynamic and static points of view for certain ballistic random walks in i.i.d environments (2014) (https://arxiv.org/abs/1405.6819v1)
[5] Effective polynomial ballisticity conditions for random walk in random environment, Comm. Pure Appl. Math., Volume 67 (2014) no. 12, pp. 1947-1973 | DOI
[6] A quenched invariance principle for certain ballistic random walks in i.i.d. environments, In and Out of Equilibrium 2 (Progress in Probability), Volume 60, Birkhäuser, 2008, pp. 137-160
[7] Ten lectures on random media, DMV Seminar, 32, Birkhäuser, 2002, vi+116 pages | DOI
[8] Multiscale analysis of exit distributions for random walks in random environments, Probab. Theory Relat. Fields, Volume 138 (2007) no. 3–4, pp. 581-645 | DOI
[9] Sub-ballistic random walk in Dirichlet environment, Electron. J. Probab., Volume 18 (2013) no. 58, pp. 1-25
[10] Sharp ellipticity conditions for ballistic behavior of random walks in random environment (2013) (https://arxiv.org/abs/1310.6281v1)
[11] A Quenched Functional Central Limit Theorem for Random Walks in Random Environments under (2014) (https://arxiv.org/abs/1409.5528)
[12] Ellipticity criteria for ballistic behavior of random walks in random environment, Probab. Theory Relat. Fields, Volume 160 (2014) no. 1–2, pp. 189-251 | DOI
[13] Explicit stationary distributions for compositions of random functions and products of random matrices, J. Theor. Probab., Volume 4 (1991) no. 1, pp. 3-36 | DOI
[14] Quenched, annealed and functional large deviations for one-dimensional random walk in random environment, Probab. Theory Relat. Fields, Volume 118 (2000) no. 1, pp. 65-114 (erratum ibid. 125, no. 1, p. 42-44) | DOI
[15] Random walks with reinforcement (1998) (Unpublished manuscript)
[16] Probability: theory and examples, Duxbury advanced series, Thompson Brooks/Cole, 2005, xi+497 pages
[17] Random walks in a Dirichlet environment, Electron. J. Probab., Volume 11 (2006), pp. 802-817 (paper no. 31, electronic only) | DOI
[18] Stable fluctuations for ballistic random walks in random environment on (2010) (https://arxiv.org/abs/1004.1333)
[19] Limit laws for transient random walks in random environment on , Ann. Inst. Fourier, Volume 59 (2009), pp. 2469-2508 | DOI
[20] A probabilistic representation of constants in Kesten’s renewal theorem, Probab. Theory Relat. Fields, Volume 144 (2009) no. 3–4, pp. 581-613 | DOI
[21] Flows in networks, Princeton University Press, 1962, xii+194 pages
[22] Local trapping for elliptic random walks in random environments in (2014) (https://arxiv.org/abs/1404.2060v1)
[23] Large deviations for a random walk in random environment, Ann. Probab., Volume 22 (1994) no. 3, pp. 1381-1428 | DOI
[24] Large deviations, Fields Institute Monographs, 14, American Mathematical Society, 2000, x+143 pages
[25] Generalized random walk in a random environment, Ann. Probab., Volume 9 (1981) no. 5, pp. 753-768 | DOI
[26] Edge-reinforced random walk on finite graphs, Infinite dimensional stochastic analysis (Amsterdam, 1999), 217–234, R (K. Ned. Akad. Wet.), Volume 52 (2000), pp. 217-234
[27] Random difference equations and renewal theory for products of random matrices, Acta Mathematica, Volume 131 (1973) no. 1, pp. 207-248 | DOI
[28] A limit law for random walk in a random environment, Compos. Math., Volume 30 (1975) no. 2, pp. 145-168
[29] Weak convergence of a random walk in a random environment, Comm. Math. Phys., Volume 87 (1982/83) no. 1, pp. 81-87 http://projecteuclid.org/euclid.cmp/1103921905 | DOI
[30] Pólya’s Theorem on Random Walks via Pólya’s Urn, Am. Math. Mon., Volume 117 (2010) no. 3, pp. 220-231 | DOI
[31] Probability on Trees and Networks, Cambridge University Press, 2015 (In preparation. Current version available at http://pages.iu.edu/~rdlyons/)
[32] Recurrence of edge-reinforced random walk on a two-dimensional graph, Ann. Probab., Volume 37 (2009) no. 5, pp. 1679-1714 | DOI
[33] Phase transition in reinforced random walk and RWRE on trees, Ann. Probab., Volume 16 (1988) no. 3, pp. 1229-1241 | DOI
[34] Almost sure functional central limit theorem for ballistic random walk in random environment, Ann. Inst. Henri Poincar�, Probab. Stat., Volume 45 (2009) no. 2, pp. 373-420 | DOI
[35] Random walks in random Dirichlet environment are transient in dimension , Probab. Theory Relat. Fields, Volume 151 (2011) no. 1–2, pp. 297-317 (https://arxiv.org/abs/0811.4285) | DOI
[36] Random Dirichlet environment viewed from the particle in dimension , Ann. Probab., Volume 41 (2013) no. 2, pp. 722-743 | DOI
[37] Edge-reinforced random walk, vertex-reinforced jump process and the supersymmetric hyperbolic sigma model, J. Eur. Math. Soc. (JEMS), Volume 17 (2015) no. 9, pp. 2353-2378 | DOI
[38] Reversed Dirichlet environment and directional transience of random walks in Dirichlet environment, Ann. Inst. Henri Poincar�, Probab. Stat., Volume 47 (2011) no. 1, pp. 1-8 | DOI
[39] Scaling for a one-dimensional directed polymer with boundary conditions, Ann. Probab., Volume 40 (2012) no. 1, pp. 19-73 | DOI
[40] Asymptotic direction for random walks in random environments, Ann. Inst. Henri Poincar�, Probab. Stat., Volume 43 (2007) no. 6, pp. 751-761 | DOI
[41] Random walks in a random environment, Ann. Probab., Volume 3 (1975), pp. 1-31 | DOI
[42] Slowdown estimates and central limit theorem for random walks in random environment, J. Europ. Math. Soc., Volume 2 (2000) no. 2, pp. 93-143 | DOI
[43] On a class of transient random walks in random environment, Ann. Probab., Volume 29 (2001) no. 2, pp. 724-765 | DOI
[44] An invariance principle for isotropic diffusions in random environment, Invent. Math., Volume 164 (2006) no. 3, pp. 455-567 | DOI
[45] A law of large numbers for random walks in random environment, Ann. Probab., Volume 27 (1999) no. 4, pp. 1851-1869 | DOI
[46] Integrability of exit times and ballisticity for random walks in Dirichlet environment, Electron. J. Probab., Volume 14 (2009), pp. 431-451 (electronic only) | DOI
[47] Asymptotic direction of random walks in Dirichlet environment, Ann. Inst. Henri Poincar�, Probab. Stat., Volume 51 (2015) no. 2, pp. 716-726 | DOI
[48] Random walks in random environment, Lectures on probability theory and statistics: École d’été de probabilités de Saint-Flour XXXI-2001 (Lect. Notes Math.), Volume 1837, Springer, 2004, pp. 191-312
[49] A non-ballistic law of large numbers for random walks in i.i.d. random environment, Electron. Comm. Probab., Volume 7 (2002), pp. 191-197 (paper no. 19, electronic only) | DOI
[50] A zero-one law for planar random walks in random environment, Ann. Probab., Volume 29 (2001) no. 4, pp. 1716-1732
Cité par Sources :