logo AFST
Large scale ocean models beyond the traditional approximation
Carine Lucas; James C. McWilliams; Antoine Rousseau
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 26 (2017) no. 4, p. 1029-1049

This work corresponds to classes given by A. Rousseau in February 2014 in Toulouse, in the framework of the CIMI labex. The objective is to describe and question the models that are traditionaly used for large scale oceanography, whether in 2D or 3D. Starting from fundamental equations (mass and momentum conservation), it is explained how (thanks to approximations for which we provide justifications) one can build simpler models that allow a realistic numerical implementation. We particularly focus on the so-called traditional approximation that neglects part of the Coriolis force.

Ce manuscrit retrace un cours donné par A. Rousseau en février 2014 à Toulouse dans le cadre du labex CIMI. Il s’agit de donner un aperçu, et de questionner, les modèles traditionnellement utilisés pour l’océanographie à grande échelle (qu’il s’agisse de modèles 2D ou 3D). En partant des équations complètes (conservation de la masse et de la quantité de mouvement), on explique comment (à partir d’approximations dont on donne les justifications physiques) on parvient à construire des modèles plus simples qui permettent une implémentation logicielle réaliste. Une focalisation particulière est effectuée sur l’approximation dite traditionnelle qui consiste à négliger une partie des termes de la force de Coriolis.

Published online : 2017-12-13
DOI : https://doi.org/10.5802/afst.1559
@article{AFST_2017_6_26_4_1029_0,
     author = {Carine Lucas and James C. McWilliams and Antoine Rousseau},
     title = {Large scale ocean models beyond the traditional approximation},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 26},
     number = {4},
     year = {2017},
     pages = {1029-1049},
     doi = {10.5802/afst.1559},
     language = {en},
     url = {https://afst.centre-mersenne.org/item/AFST_2017_6_26_4_1029_0}
}
Lucas, Carine; McWilliams, James C.; Rousseau, Antoine. Large scale ocean models beyond the traditional approximation. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 26 (2017) no. 4, pp. 1029-1049. doi : 10.5802/afst.1559. afst.centre-mersenne.org/item/AFST_2017_6_26_4_1029_0/

[1] Alfred J. Bourgeois; J.Thomas Beale Validity of the Quasigeostrophic Model for Large-Scale Flow in the Atmosphere and Ocean, SIAM J. Math. Anal., Tome 25 (1994) no. 4, pp. 1023-1068 http://link.aip.org/link/?SJM/25/1023/1 | Article | Zbl 0811.35097

[2] Joseph Valentin Boussinesq Théorie analytique de la chaleur mise en harmonie avec la thermodynamique et avec la théorie mécanique de la lumière, Gauthier-Villars, 1903 | Zbl 34.0985.02

[3] Alewyn P. Burger The potential vorticity equation: from planetary to small scale, Tellus A, Tome 43 (1991) no. 3, pp. 191-197 | Article

[4] Chongsheng Cao; Edriss S. Titi Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. Math., Tome 166 (2007) no. 1, pp. 245-267 | Article | Zbl 1151.35074

[5] Carl Eckart Hydrodynamics of oceans and atmospheres, Pergamon Press, 1960, xi+290 pages | MR MR0117097 (22 #7880) | Zbl 0204.24906

[6] Pedro F. Embid; Andrew J. Majda Low Froude number limiting dynamics for stably stratified flow with small or finite Rossby numbers, Geophysical and Astrophysical Fluid Dynamics, Tome 87 (1998) no. 1-2, pp. 1-50 | Article

[7] T. Gerkema; J. T. F. Zimmerman; L. R. M. Maas; H. van Haren Geophysical and astrophysical fluid dynamics beyond the traditional approximation, Rev. Geophys., Tome 46 (2008) no. 2, RG2004 pages | Article

[8] Keith Julien; Edgar Knobloch; Ralph Milliff; Joseph Werne Generalized quasi-geostrophy for spatially anisotropic rotationally constrained flows, Journal of Fluid Mechanics, Tome 555 (2006), pp. 233-274 | Article

[9] Carine Lucas; James C. McWilliams; Antoine Rousseau On nontraditional quasi-geostrophic equations, ESAIM, Math. Model. Numer. Anal., Tome 51 (2017) no. 2, pp. 427-442 | Article | Zbl 1364.35280

[10] Carine Lucas; Madalina Petcu; Antoine Rousseau Quasi-hydrostatic primitive equations for ocean global circulation models, Chin. Ann. Math., Ser. B, Tome 31 (2010) no. 6, pp. 939-952 | Article | Zbl 1359.76322

[11] Carine Lucas; Antoine Rousseau New Developments and Cosine Effect in the Viscous Shallow Water and Quasi-Geostrophic Equations, Multiscale Model. Simul., Tome 7 (2008) no. 2, pp. 796-813 | Article | Zbl 1173.76011

[12] Joseph Oliger; Arne Sundström Theoretical and practical aspects of some initial boundary value problems in fluid dynamics, SIAM J. Appl. Math., Tome 35 (1978) no. 3, pp. 419-446 | Article | Zbl 0397.35067

[13] Madalina Petcu; Roger M. Temam; Mohammed Ziane Some mathematical problems in geophysical fluid dynamics, Handbook of Numerical Analysis. Special Issue on Computational Methods for the Ocean and the Atmosphere (P.G. Ciarlet, ed.), Elsevier, 2009, pp. 577-750

[14] Norman A. Phillips The equations of motion for a shallow rotating atmosphere and the “traditional approximation”, Journal of the Atmospheric Sciences, Tome 23 (1966) no. 5, pp. 626-628 | Article

[15] Norman A. Phillips Reply (to George Veronis), Journal of the Atmospheric Sciences, Tome 25 (1968) no. 6, pp. 1155-1157 | Article

[16] Antoine Rousseau; Roger M. Temam; Joseph Tribbia The 3D Primitive Equations in the absence of viscosity: Boundary conditions and well-posedness in the linearized case, J. Math. Pures Appl., Tome 89 (2008), pp. 297-319 http://hal.inria.fr/inria-00179961/fr/ | Article | Zbl 1137.35057

[17] Antoine Rousseau; Roger M. Temam; Joseph Tribbia Boundary value problems for the inviscid primitive equations in limited domains, Handbook of Numerical Analysis, Special volume on Computational Methods for the Oceans and the Atmosphere (P.G. Ciarlet, ed.), Elsevier, 2009, pp. 481-575 http://hal.inria.fr/inria-00324224/fr/ | Article

[18] Roger M. Samelson The Theory of Large-Scale Ocean Circulation, Cambridge University Press, 2011, xiii+193 pages | Zbl 1250.86007

[19] Andrew L. Stewart; Paul J. Dellar Multilayer shallow water equations with complete Coriolis force. Part 1. Derivation on a non-traditional beta-plane, Journal of Fluid Mechanics, Tome 651 (2010), pp. 387-413 http://journals.cambridge.org/article_S0022112009993922 | Article

[20] Roger M. Temam; Joseph Tribbia Open boundary conditions for the primitive and Boussinesq equations, Journal of the Atmospheric Sciences, Tome 60 (2003) no. 21, pp. 2647-2660 | Article | MR 2 013 931

[21] George Veronis Comments on Phillips’ proposed simplification of the equations of motion for a shallow rotating atmosphere, Journal of the Atmospheric Sciences, Tome 25 (1968) no. 6, p. 1154-1155 | Article

[22] Roald K. Wangsness Comments on “the equations of motion for a shallow rotating atmosphere and the ‘traditionnal approximation’ ”, Journal of the Atmospheric Sciences, Tome 27 (1970) no. 3, pp. 504-506 | Article

[23] A. A. White; B. J. Hoskins; I. Roulstone; A. Staniforth Consistent approximate models of the global atmosphere: shallow, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic, Q. J. R. Meteorol. Soc., Tome 131 (2005), pp. 2081-2107 | Article