logo AFST
Lecture notes on the DiPerna–Lions theory in abstract measure spaces
Luigi Ambrosio; Dario Trevisan
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 26 (2017) no. 4, p. 729-766

These notes collect the lectures given by the first author in Toulouse, April 2014, on the well-posedness theory for continuity and transport equation in metric measure spaces, summarizing the joint work appeared in Analysis and PDE. The last part of the notes covers also more recent developments, due to the second author, on diffusion operators on metric measure spaces.

Ces notes résument les leçons données à Toulouse en avril 2014 par le premier auteur sur le caractère bien ou mal posé des problèmes liés aux équations de continuité et de transport dans les espaces métriques mesurés, reprenant un travail commun publié dans Analysis and PDE. La dernière partie des notes couvre également des développements plus récents, dus au second auteur, sur les opérateurs de diffusion dans les espaces métriques mesurés.

Published online : 2017-12-13
DOI : https://doi.org/10.5802/afst.1551
@article{AFST_2017_6_26_4_729_0,
     author = {Luigi Ambrosio and Dario Trevisan},
     title = {Lecture notes on the DiPerna--Lions theory in abstract measure spaces},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 26},
     number = {4},
     year = {2017},
     pages = {729-766},
     doi = {10.5802/afst.1551},
     language = {en},
     url = {https://afst.centre-mersenne.org/item/AFST_2017_6_26_4_729_0}
}
Ambrosio, Luigi; Trevisan, Dario. Lecture notes on the DiPerna–Lions theory in abstract measure spaces. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 26 (2017) no. 4, pp. 729-766. doi : 10.5802/afst.1551. afst.centre-mersenne.org/item/AFST_2017_6_26_4_729_0/

[1] Sergio Albeverio; Shigeo Kusuoka Maximality of infinite-dimensional Dirichlet forms and Høegh-Krohn’s model of quantum fields, Ideas and methods in quantum and statistical physics (Oslo, 1988), Cambridge University Press, 1992, pp. 301-330 | Zbl 0798.46055

[2] Luigi Ambrosio Transport equation and Cauchy problem for BV vector fields, Invent. Math., Tome 158 (2004) no. 2, pp. 227-260 | Article | Zbl 1075.35087

[3] Luigi Ambrosio Transport equation and Cauchy problem for non-smooth vector fields, Calculus of Variations and Non-Linear Partial Differential Equations (CIME Series, Cetraro, 2005) (Lecture Notes in Mathematics) Tome 1927, Springer, 2008, pp. 1-42 | Zbl 1159.35041

[4] Luigi Ambrosio; Gianluca Crippa Existence, uniqueness, stability and differentiability properties of the flow associated to weakly differentiable vector fields, Transport equations and multi-D hyperbolic conservation laws (Lecture Notes of the Unione Matematica Italiana) Tome 5, Springer, 2008, pp. 3-57 | Zbl 1155.35313

[5] Luigi Ambrosio; Gianluca Crippa Continuity equations and ODE flows with non-smooth velocity, Proc. R. Soc. Edinb., Sect. A, Math., Tome 144 (2014) no. 6, pp. 1191-1244 | Article | Zbl 1358.37046

[6] Luigi Ambrosio; Alessio Figalli On flows associated to Sobolev vector fields in Wiener spaces: an approach à la DiPerna-Lions, J. Funct. Anal., Tome 256 (2009) no. 1, pp. 179-214 | Article | Zbl 1156.60036

[7] Luigi Ambrosio; Nicola Gigli; Giuseppe Savaré Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics, ETH Zürich, Birkhäuser, 2005, vii+333 pages | Zbl 1090.35002

[8] Luigi Ambrosio; Nicola Gigli; Giuseppe Savaré Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math., Tome 195 (2014) no. 2, pp. 289-391 | Article | Zbl 1312.53056

[9] Luigi Ambrosio; Nicola Gigli; Giuseppe Savaré Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., Tome 163 (2014) no. 7, pp. 1405-1490 | Article | Zbl 1304.35310

[10] Luigi Ambrosio; Giuseppe Savaré; Lorenzo Zambotti Existence and stability for Fokker-Planck equations with log-concave reference measure, Probab. Theory Relat. Fields, Tome 145 (2009) no. 3-4, pp. 517-564 | Article | Zbl 1235.60105

[11] Luigi Ambrosio; Dario Trevisan Well posedness of Lagrangian flows and continuity equations in metric measure spaces, Anal. PDE, Tome 7 (2014) no. 5, pp. 1179-1234 | Article | Zbl 1357.49058

[12] Dominique Bakry On Sobolev and logarithmic Sobolev inequalities for Markov semigroups, New trends in stochastic analysis (Charingworth, 1994) (World Sci. Publ.), River Edge, 1997, pp. 43-75

[13] Dominique Bakry; Ivan Gentil; Michel Ledoux Analysis and Geometry of Markov Diffusion Operators, Grundlehren der Mathematischen Wissenschaften, Tome 348, Springer, 2014, xx+552 pages | Zbl 06175511

[14] David Bate Structure of measures in Lipschitz differentiability spaces, J. Am. Math. Soc., Tome 28 (2015) no. 2, pp. 421-482 | Article | Zbl 1307.30097

[15] Marco Biroli; Umberto Mosco A Saint-Venant principle for Dirichlet forms on discontinuous media, Ann. Mat. Pura Appl., Tome 169 (1995), pp. 125-181 | Article | Zbl 0851.31008

[16] Vladimir I. Bogachev Differentiable measures and the Malliavin calculus, Mathematical Surveys and Monographs, Tome 164, American Mathematical Society, 2010, xv+488 pages | Zbl 1247.28001

[17] Nicolas Bouleau; Francis Hirsch Dirichlet forms and analysis on Wiener space, de Gruyter Studies in Mathematics, Tome 14, De Gruyter, 1991, x+325 pages | Zbl 0748.60046

[18] Italo Capuzzo Dolcetta; Benoît Perthame On some analogy between different approaches to first order PDE’s with non smooth coefficients, Adv. Math. Sci. Appl., Tome 6 (1996) no. 2, pp. 689-703 | Zbl 0865.35032

[19] Nicolas Depauw Non unicité des solutions bornées pour un champ de vecteurs BV en dehors d’un hyperplan, C. R., Math., Acad. Sci. Paris, Tome 337 (2003) no. 4, pp. 249-252 | Article | Zbl 1024.35029

[20] Simone Di Marino Sobolev and BV spaces on metric measure spaces via derivations and integration by parts (2014) (https://arxiv.org/abs/1409.5620)

[21] Ronald J. DiPerna; Pierre-Louis Lions Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Tome 98 (1989) no. 3, pp. 511-547 | Article | Zbl 0696.34049

[22] Andreas Eberle Uniqueness and non-uniqueness of semigroups generated by singular diffusion operators, Lecture Notes in Mathematics, Tome 1718, Springer, 1999, viii+262 pages | Zbl 0957.60002

[23] Stewart N. Ethier; Thomas G. Kurtz Markov processes, Characterization and convergence, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, 1986, x+534 pages | Zbl 0592.60049

[24] Alessio Figalli Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients, J. Funct. Anal., Tome 254 (2008) no. 1, p. 109-53 | Article | Zbl 1169.60010

[25] Masatoshi Fukushima; Yoichi Oshima; Masayoshi Takeda Dirichlet forms and symmetric Markov processes, de Gruyter Studies in Mathematics, Tome 19, De Gruyter, 2011, x+489 pages | Zbl 1227.31001

[26] Nicola Gigli Nonsmooth differential geometry – An approach tailored for spaces with Ricci curvature bounded from below (2014) (https://arxiv.org/abs/1407.0809)

[27] Claude Le Bris; Pierre-Louis Lions Renormalized solutions of some transport equations with partially W 1,1 velocities and applications, Ann. Mat. Pura Appl., Tome 183 (2004) no. 1, pp. 97-130 | Article | Zbl 1170.35364

[28] Claude Le Bris; Pierre-Louis Lions Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients, Commun. Partial Differ. Equations, Tome 33 (2008) no. 7, pp. 1272-1317 | Article | Zbl 1157.35301

[29] Zhi-Ming Ma; Michael Röckner Introduction to the theory of (non-symmetric) Dirichlet forms, Universitext, Springer, 1992, viii+209 pages | Zbl 0826.31001

[30] Andrea Schioppa Derivations and Alberti representations, Adv. Math., Tome 293 (2016), pp. 436-528 | Article | Zbl 1335.53053

[31] Ralph E. Showalter Monotone operators in Banach space and nonlinear partial differential equations, Mathematical Surveys and Monographs, Tome 49, American Mathematical Society, 1997, xi+278 pages | Zbl 0870.35004

[32] Stanislav Konstantinovich Smirnov Decomposition of solenoidal vector charges into elementary solenoids and the structure of normal one-dimensional currents, St. Petersbg. Math. J., Tome 5 (1994) no. 4, pp. 841-867 | Zbl 0832.49024

[33] Wilhelm Stannat The theory of generalized Dirichlet forms and its applications in analysis and stochastics, Mem. Am. Math. Soc., Tome 678 (1999), pp. 1-101 | Zbl 1230.60006

[34] Peter Stollmann A dual characterization of length spaces with application to Dirichlet metric spaces, Stud. Math., Tome 198 (2010) no. 3, pp. 221-233 | Article | Zbl 1198.31005

[35] Daniel W. Stroock; S. R. Srinivasa Varadhan Multidimensional diffusion processes, Classics in Mathematics, Springer, 2006, xii+338 pages | Zbl 103.60005

[36] Karl-Theodor Sturm Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations, Osaka J. Math., Tome 32 (1995) no. 2, pp. 275-312 | Zbl 0854.35015

[37] Dario Trevisan (in preparation)

[38] Dario Trevisan Well-posedness of Diffusion Processes in Metric Measure Spaces (2014) (Ph. D. Thesis)

[39] Dario Trevisan Lagrangian flows driven by BV fields in Wiener spaces, Probab. Theory Relat. Fields, Tome 163 (2015) no. 1-2, pp. 123-147 | Article | Zbl 1329.35109

[40] Dario Trevisan Well-posedness for multidimensional diffusion processes with weakly differentiable coefficients, Electron. J. Probab., Tome 21 (2016) (Paper No. 22, 41 p.) | Article | Zbl 1336.60159

[41] Nik Weaver Lipschitz algebras, World Scientific, 1999, xiii+233 pages | Zbl 0936.46002

[42] Nik Weaver Lipschitz algebras and derivations. II: Exterior differentiation, J. Funct. Anal., Tome 178 (2000) no. 1, pp. 64-112 | Article | Zbl 0979.46035

[43] Toshio Yamada; Shinzo Watanabe On the uniqueness of solutions of stochastic differential equations, J. Math. Kyoto Univ., Tome 11 (1971), pp. 155-167 | Article | Zbl 0236.60037