We show that the -signature of an -finite local ring of characteristic exists when is either the localization of an -graded ring at its irrelevant ideal or -Gorenstein on its punctured spectrum. This extends results by Huneke, Leuschke, Yao and Singh and proves the existence of the -signature in the cases where weak -regularity is known to be equivalent to strong -regularity.
Nous prouvons dans cet article l’existence de la -signature d’un anneau local -fini , de caractéristique positive , quand est la localisation à l’unique idéal homogène maximal d’un anneau -gradué ou quand est -Gorenstein sur son spectre épointé. Ceci généralise les résultats de Huneke, Leuschke, Yao et Singh et prouve l’existence de la -signature dans les cas où faible et forte -régularité sont équivalentes.
@article{AFST_2006_6_15_2_195_0, author = {Ian M. Aberbach and Florian Enescu}, title = {When does the $F$-signature exist?}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {195--201}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 15}, number = {2}, year = {2006}, doi = {10.5802/afst.1118}, mrnumber = {2244213}, zbl = {1118.13003}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1118/} }
TY - JOUR AU - Ian M. Aberbach AU - Florian Enescu TI - When does the $F$-signature exist? JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2006 SP - 195 EP - 201 VL - 15 IS - 2 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1118/ DO - 10.5802/afst.1118 LA - en ID - AFST_2006_6_15_2_195_0 ER -
%0 Journal Article %A Ian M. Aberbach %A Florian Enescu %T When does the $F$-signature exist? %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2006 %P 195-201 %V 15 %N 2 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1118/ %R 10.5802/afst.1118 %G en %F AFST_2006_6_15_2_195_0
Ian M. Aberbach; Florian Enescu. When does the $F$-signature exist?. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 15 (2006) no. 2, pp. 195-201. doi : 10.5802/afst.1118. https://afst.centre-mersenne.org/articles/10.5802/afst.1118/
[1] Some conditions for the equivalence of weak and strong -regularity, Comm. Alg., Volume 30 (2002), pp. 1635-1651 | MR | Zbl
[2] The structure of -pure rings, Math. Zeit. (to appear) | MR | Zbl
[3] The -signature and strong -regularity, Math. Res. Lett., Volume 10 (2003), pp. 51-56 | MR | Zbl
[4] Cohen-Macaulay Rings, Cambridge University Press, Cambridge, 1993 | MR | Zbl
[5] Cyclic purity versus purity in excellent Noetherian rings, Trans. Amer. Math. Soc., Volume 231 (1977) no. 2, pp. 463-488 | MR | Zbl
[6] Tight closure and strong -regularity, Mémoires de la Soc. Math. France (1989) no. 38, pp. 119-133 | Numdam | MR | Zbl
[7] Two theorems about maximal Cohen-Macaulay modules, Math. Ann., Volume 324 (2002), pp. 391-404 | MR | Zbl
[8] Strong and weak -regularity are equivalent for graded rings, Amer. J. Math., Volume 121 (1999), pp. 1279-1290 | MR | Zbl
[9] The -signature of an affine semigroup ring, J. Pure Appl. Algebra, Volume 196 (2005), pp. 313-321 | MR | Zbl
[10] Simplicity of rings of differential operators in prime characteristic, Proc. London. Math. Soc., Volume (3) 75 (1997) no. 1, pp. 32-62 | MR | Zbl
[11] Modules with finite -representation type, Jour. London Math. Soc. (to appear) | MR | Zbl
[12] Observations on the -signature of local rings of characteristic (2003) (preprint) | Zbl
Cited by Sources: