We give a sufficient condition for a (resp. )-totally real, complex-tangential, -dimensional submanifold in a weakly pseudoconvex boundary of class (resp. ) to be a local peak set for the class (resp. ). Moreover, we give a consequence of it for Catlin’s multitype.
On donne une condition suffisante pour qu’une sous variété (resp. ), totalement réelle, complexe-tangentielle, de dimension dans le bord d’un domaine faiblement pseudoconvexe de , soit un ensemble localement pic pour la classe (resp. ). De plus, on donne une conséquence de cette condition en terme de multitype de D. Catlin.
@article{AFST_2009_6_18_3_577_0, author = {Borhen Halouani}, title = {Local {Peak} {Sets} in {Weakly} {Pseudoconvex} {Boundaries} in $\mathbb{C}^n$}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {577--598}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 18}, number = {3}, year = {2009}, doi = {10.5802/afst.1215}, mrnumber = {2582442}, zbl = {1194.32020}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1215/} }
TY - JOUR AU - Borhen Halouani TI - Local Peak Sets in Weakly Pseudoconvex Boundaries in $\mathbb{C}^n$ JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2009 SP - 577 EP - 598 VL - 18 IS - 3 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1215/ DO - 10.5802/afst.1215 LA - en ID - AFST_2009_6_18_3_577_0 ER -
%0 Journal Article %A Borhen Halouani %T Local Peak Sets in Weakly Pseudoconvex Boundaries in $\mathbb{C}^n$ %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2009 %P 577-598 %V 18 %N 3 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1215/ %R 10.5802/afst.1215 %G en %F AFST_2009_6_18_3_577_0
Borhen Halouani. Local Peak Sets in Weakly Pseudoconvex Boundaries in $\mathbb{C}^n$. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 18 (2009) no. 3, pp. 577-598. doi : 10.5802/afst.1215. https://afst.centre-mersenne.org/articles/10.5802/afst.1215/
[B-I] Boutet de Monvel ( L.), Iordan (A.).— Peak curves in weakly Pseudoconvex Boundaries in . J. Diff. Geometry 7, Number 1, p. 1-15 (1997). | MR | Zbl
[Bo] Boggess (A.).— CR manifolds and the tangential Cauchy-Riemann complex. Studies in advanced mathematics (Texas A&M University) (1992). | MR | Zbl
[B-S] Boas ( H.P.), Straube (E.J.).— On equality of line type and variety type of real hypersurfaces in . J. Geom. Anal. 2, No.2, p. 95-98 (1992). | MR | Zbl
[Ca] Catlin (D.).— Boundary invariants of pseudoconvex domains. Annals of Mathematics, 120, p. 529-586 (1984). | MR | Zbl
[DA] D’Angelo (J.P.).— Real hypersurfaces, orders of contact, and applications. Annals of Mathematics, 115, p. 615-637 (1982). | MR | Zbl
[H-S] Hakim (M.), Sibony (N.).— Ensembles pics dans les domaines strictement pseudoconvexes. Duke Math. J. 45, p. 601-607 (1978). | MR | Zbl
[Mi] Michel (J.).— Integral representations on weakly pseudoconvex domains. Math. Z. 208, No. 3, p. 437-462 (1991). | MR | Zbl
[Na] Narasimhan (R.).— Analysis on Real and Complex Manifolds. North-Holland Mathematical Library (1968) | MR | Zbl
Cited by Sources: