We give a sufficient condition for a (resp. )-totally real, complex-tangential, -dimensional submanifold in a weakly pseudoconvex boundary of class (resp. ) to be a local peak set for the class (resp. ). Moreover, we give a consequence of it for Catlin’s multitype.
On donne une condition suffisante pour qu’une sous variété (resp. ), totalement réelle, complexe-tangentielle, de dimension dans le bord d’un domaine faiblement pseudoconvexe de , soit un ensemble localement pic pour la classe (resp. ). De plus, on donne une conséquence de cette condition en terme de multitype de D. Catlin.
Accepted:
Published online:
DOI: 10.5802/afst.1215
Borhen Halouani 1
@article{AFST_2009_6_18_3_577_0,
author = {Borhen Halouani},
title = {Local {Peak} {Sets} in {Weakly} {Pseudoconvex} {Boundaries} in $\mathbb{C}^n$},
journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
pages = {577--598},
year = {2009},
publisher = {Universit\'e Paul Sabatier, Toulouse},
volume = {Ser. 6, 18},
number = {3},
doi = {10.5802/afst.1215},
zbl = {1194.32020},
mrnumber = {2582442},
language = {en},
url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1215/}
}
TY - JOUR
AU - Borhen Halouani
TI - Local Peak Sets in Weakly Pseudoconvex Boundaries in $\mathbb{C}^n$
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2009
SP - 577
EP - 598
VL - 18
IS - 3
PB - Université Paul Sabatier, Toulouse
UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1215/
DO - 10.5802/afst.1215
LA - en
ID - AFST_2009_6_18_3_577_0
ER -
%0 Journal Article
%A Borhen Halouani
%T Local Peak Sets in Weakly Pseudoconvex Boundaries in $\mathbb{C}^n$
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2009
%P 577-598
%V 18
%N 3
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1215/
%R 10.5802/afst.1215
%G en
%F AFST_2009_6_18_3_577_0
Borhen Halouani. Local Peak Sets in Weakly Pseudoconvex Boundaries in $\mathbb{C}^n$. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 18 (2009) no. 3, pp. 577-598. doi: 10.5802/afst.1215
[B-I] Boutet de Monvel ( L.), Iordan (A.).— Peak curves in weakly Pseudoconvex Boundaries in . J. Diff. Geometry 7, Number 1, p. 1-15 (1997). | Zbl | MR
[B-S] Boas ( H.P.), Straube (E.J.).— On equality of line type and variety type of real hypersurfaces in . J. Geom. Anal. 2, No.2, p. 95-98 (1992). | Zbl | MR
[Bo] Boggess (A.).— CR manifolds and the tangential Cauchy-Riemann complex. Studies in advanced mathematics (Texas A&M University) (1992). | Zbl | MR
[Ca] Catlin (D.).— Boundary invariants of pseudoconvex domains. Annals of Mathematics, 120, p. 529-586 (1984). | Zbl | MR
[DA] D’Angelo (J.P.).— Real hypersurfaces, orders of contact, and applications. Annals of Mathematics, 115, p. 615-637 (1982). | Zbl | MR
[H-S] Hakim (M.), Sibony (N.).— Ensembles pics dans les domaines strictement pseudoconvexes. Duke Math. J. 45, p. 601-607 (1978). | Zbl | MR
[Mi] Michel (J.).— Integral representations on weakly pseudoconvex domains. Math. Z. 208, No. 3, p. 437-462 (1991). | Zbl | MR
[Na] Narasimhan (R.).— Analysis on Real and Complex Manifolds. North-Holland Mathematical Library (1968) | Zbl | MR
Cited by Sources: