logo AFST
End-to-end gluing of constant mean curvature hypersurfaces
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 18 (2009) no. 4, pp. 717-737.

It was observed by R. Kusner and proved by J. Ratzkin that one can connect together two constant mean curvature surfaces having two ends with the same Delaunay parameter. This gluing procedure is known as a “end-to-end connected sum”. In this paper we generalize, in any dimension, this gluing procedure to construct new constant mean curvature hypersurfaces starting from some known hypersurfaces.

Il a été observé par R. Kusner et prouvé par J. Ratzkin qu’on peut recoller ensemble deux surfaces à courbure moyenne constante ayant deux bouts de même paramètre de Delaunay. Cette procédure de recollement est connu comme « somme connexe bout-à-bout ». Dans ce papier, nous donnons une généralisation de cette construction en dimension quelconque dans le but de construire des nouvelles hypersurfaces à courbure moyenne constante à partir des hypersurfaces connues.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1222
Mohamed Jleli 1

1 Département de mathématiques. Ecole supérieure des Sciences et Techniques de Tunis, 5 Avenue Taha Hussein 1008, Tunisia.
@article{AFST_2009_6_18_4_717_0,
     author = {Mohamed Jleli},
     title = {End-to-end gluing of constant mean curvature hypersurfaces},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {717--737},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 18},
     number = {4},
     year = {2009},
     doi = {10.5802/afst.1222},
     zbl = {1206.53010},
     mrnumber = {2590386},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1222/}
}
TY  - JOUR
TI  - End-to-end gluing of constant mean curvature hypersurfaces
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2009
DA  - 2009///
SP  - 717
EP  - 737
VL  - Ser. 6, 18
IS  - 4
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1222/
UR  - https://zbmath.org/?q=an%3A1206.53010
UR  - https://www.ams.org/mathscinet-getitem?mr=2590386
UR  - https://doi.org/10.5802/afst.1222
DO  - 10.5802/afst.1222
LA  - en
ID  - AFST_2009_6_18_4_717_0
ER  - 
%0 Journal Article
%T End-to-end gluing of constant mean curvature hypersurfaces
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2009
%P 717-737
%V Ser. 6, 18
%N 4
%I Université Paul Sabatier, Toulouse
%U https://doi.org/10.5802/afst.1222
%R 10.5802/afst.1222
%G en
%F AFST_2009_6_18_4_717_0
Mohamed Jleli. End-to-end gluing of constant mean curvature hypersurfaces. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 18 (2009) no. 4, pp. 717-737. doi : 10.5802/afst.1222. https://afst.centre-mersenne.org/articles/10.5802/afst.1222/

[1] Delaunay (C.).— Sur la surface de révolution dont la courbure moyenne est constante, Jour. de Mathématique, 6, p. 309-320 (1841).

[2] Eells (J.).— The surfaces of Delaunay , Math. Intelligencer 9, no.1, p. 53-57 (1987). | MR: 869541 | Zbl: 0605.53002

[3] Fakhi (S.) and Pacard (F.).— Existence result for minimal hypersurfaces with prescribed finite number of planar end , Manuscripta Mathematica, vol 103, issu 4, p. 465-512 (2000). | MR: 1811769 | Zbl: 0992.53011

[4] Hsiang (W. Y.) and Yu (W. C.).— A generalization of a theorem of Delaunay, J. Differ. Geom. 16, No. 2, p. 161-177 (1981). | MR: 638783 | Zbl: 0504.53044

[5] Jleli (M.).— Moduli space theory of constant mean curvature hypersurfaces. Journal of Advanced Nonlinear Studies, 9 p. 29-68 (2009). | MR: 2473148 | Zbl: pre05567718

[6] Jleli (M.) and Pacard (F.).— Construction of constant mean curvature hypersurfaces with prescribed finite number of Delaunay end. To appear.

[7] Jleli (M.) and Pacard (F.).— An end-to-end construction for compact constant mean curvature surfaces Pacific Journal of Mathematics Vol. 221, No. 1, p. 81-108 (2005). | MR: 2194146 | Zbl: 1110.53043

[8] Kapouleas (N.).— Complete constant mean curvature surfaces in Euclidean three-space, Ann. of Math. (2) 131, p. 239-330 (1990). | MR: 1043269 | Zbl: 0699.53007

[9] Kapouleas (N.).— Compact constant mean curvature surfaces in Euclidean three-space, J. Differ. Geom. 33, No. 3, p. 683-715 (1991). | MR: 1100207 | Zbl: 0727.53063

[10] Kapouleas (N.).— Constant mean curvature surfaces constructed by fusing Went tori, Invent. Math. 119, p. 443-518 (1995). | MR: 1317648 | Zbl: 0840.53005

[11] Katsuei (K.).— Surfaces of revolution with prescribed mean curvature. Tohoku. Math. J ser 32, p. 147-153 (1980). | MR: 567837 | Zbl: 0431.53005

[12] Katsuei (K.).— Surfaces of revolution with prescribed mean curvature. Tohoku. Math. J ser 32, p. 147-153 (1980). | MR: 567837 | Zbl: 0431.53005

[13] Kusner (R.).— Bubbles conservations laws and balanced diagram , Geometric analysis and Computer graphics, (1991) 120-137. Springer-Verlag. | MR: 1081331

[14] Kusner (R.), Mazzeo (R.) and Pollack (D.).— The moduli spaces of complete embeeded constant mean curvature surfaces , Geom. Funct. Anal. 6, p. 120-137 (1996). | MR: 1371233 | Zbl: 0966.58005

[15] Mazzeo (R.) and Pacard (F.).— Constant mean curvature surfaces with Delaunay ends, Comm. Anal. Geom. 9 No. 1 p. 169-237 (2001). | MR: 1807955 | Zbl: 1005.53006

[16] Mazzeo (R.), Pacard (F.) and Pollack (D.).— Connected sums of constant mean curvature surfaces in Euclidiean 3 space, J.Reine Ang.Math. 536, p. 115.165 (2001). | MR: 1837428 | Zbl: 0972.53010

[17] Mazzeo (R.), Pacard (F.) and Pollack (D.).— The conformal theory of Alexandrov embedded constant mean curvature surfaces in 3 , in Global theory of minimal surfaces, edited by D. Hoffman, Clay Mathematics Proceedings 2, Amer. Math. Soc, Providence, p. 525-559 (2005). | MR: 2167275 | Zbl: 1101.53006

[18] Mazzeo (R.), Pollack (D.) and Uhlenbeck (K.).— Moduli spaces of singular Yammabe metrics , J. Amer. Math. 9, p. 303-344 (1996). | MR: 1356375 | Zbl: 0849.58012

[19] Ratzkin (J.).— An end-to-end gluing construction for surfaces of constant mean curvature, PHD Thesis, University of Washington (2001).

[20] Rosenberg (H.).— Hypersurfaces of constant mean curvature in space forms, Bull. Sc. math, série 2, 117, p. 211-239 (1993). | Zbl: 0787.53046

Cited by Sources: