We show that admits an equivalent which gives a negative answer to a problem mentioned by Dowling, Hu and Smith. Then we get a stability property for analytic Radon-Nikodym operators. Since, for every Banach space and can be identified, for a metric compact abelian group , its dual , and , we show that, if the space has the property, then it coincides with Finally we show that, if has the then it coincides with
Nous montrons que admet une norme équivalente ce qui répond négativement à une question de Dowling, Hu et Smith. Puis nous obtenons une propriété de stabilité des opérateurs de Radon-Nikodym analytique. Motivés par l’identification entre et où est un espace de Banach, pour un groupe abélien compact métrisable , son dual , et , nous prouvons que, si l’espace a la propriété , alors il coincïde avec Enfin, nous montrons que si a la propriété alors il coincïde avec
@article{AFST_2011_6_20_2_439_0, author = {Mohammad Daher}, title = {Propri\'et\'es g\'eom\'etriques de $h^{p}({\mathbb{D}},X)$ et g\'en\'eralisations}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {439--463}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {6e s{\'e}rie, 20}, number = {2}, year = {2011}, doi = {10.5802/afst.1298}, mrnumber = {2847890}, zbl = {1226.46031}, language = {fr}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1298/} }
TY - JOUR AU - Mohammad Daher TI - Propriétés géométriques de $h^{p}({\mathbb{D}},X)$ et généralisations JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2011 SP - 439 EP - 463 VL - 20 IS - 2 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1298/ DO - 10.5802/afst.1298 LA - fr ID - AFST_2011_6_20_2_439_0 ER -
%0 Journal Article %A Mohammad Daher %T Propriétés géométriques de $h^{p}({\mathbb{D}},X)$ et généralisations %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2011 %P 439-463 %V 20 %N 2 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1298/ %R 10.5802/afst.1298 %G fr %F AFST_2011_6_20_2_439_0
Mohammad Daher. Propriétés géométriques de $h^{p}({\mathbb{D}},X)$ et généralisations. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 20 (2011) no. 2, pp. 439-463. doi : 10.5802/afst.1298. https://afst.centre-mersenne.org/articles/10.5802/afst.1298/
[BL] Benyamini (Y.), Lindenstrauss (J.).— Geometric nonlinear functional analysis, Vol. 1, AMS Colloquium Publications 48, American Mathematical Society, Providence, RI (2000). | MR | Zbl
[Bl-1] Blasco (O.).— Boundary values of vector valued harmonic functions considered as operators, Studia-Math. 86, p. 21-33 (1987). | MR | Zbl
[Bl] Blasco (O.).— Boundary values of functions in vector valued Hardy spaces and geometry of Banach spaces, J. Funct. Anal. 78 n 2, p. 346-364 (1988). | MR | Zbl
[BD] Bukhvalov (A. V.), Danilevich (A. A.).— Boundary properties of analytic and harmonic fuctions with values in Banach spaces, Math. Notes 31, 203-214 ; English translation Math. Notes 31, p. 104-110 (1982). | MR | Zbl
[D-1] Daher (M.).— Translations mesurables et ensembles de Rosenthal, Annales de la Fac. de Toulouse, vol. XIV, n I, p. 105-121 (2005). | Numdam | MR | Zbl
[D-2] Daher (M.).— Ensembles de Rosenthal et propriété de Radon-Nikodym relative, Annales de la Fac. de Toulouse, vol. XVI, n 3, p. 515-526 (2009). | Numdam | MR | Zbl
[DGL] Davis (W. J.), Ghoussoub (N.), Lindenstrauss (J.).— A lattice renorming theorem and applications to vector-valued processes,Trans. Amer. Math. Soc. p. 531-540 (1981) | MR | Zbl
[DGZ] Deville (R.), Godefroy (G.), Zizler (V.).— Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys 64, (1993), Longman scientific. | MR | Zbl
[DF] Diestel (J.), Faires (B.).— On vector measures, Trans. Amer. Math. Soc. 198, p. 253-271 (1974). | MR | Zbl
[DU] Diestel (J.), Uhl (J.).— Vector measures, Math. Surveys N. 15, (1977), AMS | MR | Zbl
[Die] Dieudonné (J.).— Sur le théorème de Lebesgue-Nikodym V, Canad. J. Math. 3, p. 129-139 (1951). | MR | Zbl
[Din] Dinculeanu (N.).— Linear operations on spaces of totally measurable functions, Re. Roum. Math. Pures, Appl. 10, 14931524 (1965). | MR | Zbl
[Do-1] Dowling (P. N.).— The analytic Radon-Nikodym property in Lebesgue-Bochner function spaces, Proc. AMS, 99, p. 119-121 (1987). | MR | Zbl
[Do] Dowling (P. N.).— Radon-Nikodym properties associated with subsets of countable discrete abelian group,Trans. Amer. Math. Soc. 327, p. 879-890 (1991). | MR | Zbl
[DL] Dowling (P. N.), Lennard (J.).— Kadec-Klee properties of vector-valued Hardy spaces, Math. Proc. Camb. Phil. Soc. 111, p. 535-544 (1992). | MR | Zbl
[DZS] Dowling (P. N.), Zhibao (H.), Smith (M. A.).— Geometry of spaces of vector-valued harmonic functions, Can. J. Math. Vol. 46(1), 274-283 (1994). | MR | Zbl
[E] Edgar (G. A.).— Banach spaces with the analytic Radon-Nikodym property and compact abelian groups, Almost everywhere convergence (Columbus, OH, 1988), 195-213, Academic Press, Boston, MA (1989). | MR | Zbl
[HL] Hardy (C. H.), Littlewood (J. E.).— A maximal theorem with functions theoretic applications, Acta. Math. 54, p. 81-116 (1930). | MR
[L] Lindenstrauss (J.).— Weakly compact sets-their topological properties and the Banach spaces they generate, Ann. of Math. Studies 69, p. 235-273 (1972). | MR | Zbl
[LT] Lindenstrauss (J.), Tzaffriri (L.).— Classical Banach spaces, vol. II, Springer (1977). | Zbl
[LP] Lust-Piquard (F.).— Ensembles de Rosenthal et ensembles de Riesz, C. R. Acad. Sci. Paris 282, p. 833-835 (1976). | MR | Zbl
[P] Parthasarathy (T.).— Selection theorems and their applications, Lecture Notes in Math. 263, Springer-Verlag (1972). | MR | Zbl
[RaS] Randrianatoania (N.), Saab (E.).— Stability of some types of Radon-Nikodym properties, Illin. J. Math. 39, p. 416-430, (1995). | MR | Zbl
[RS] Robdera (M.), Saab (P.).— Complete continuity properties of Banach spaces associated with subsets of discrete abelian group, Glasgow Math. J. 43, p. 185-198 (2001). | MR | Zbl
[Ru] Rudin (W.).— Real and complex analysis, Mc-Graw Hill (1966). | MR | Zbl
[W] Warschawski (S.).— Über einige Konvergenzsätze aus der theorie konformen abbildungen. Nachr. Akad. Wiss. Göttingen, p. 344-369 (1930).
Cited by Sources: