logo AFST
Macdonald formula for spherical functions on affine buildings
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 20 (2011) no. 4, pp. 669-758.

In this paper we explicitly determine the Macdonald formula for spherical functions on any locally finite, regular and affine Bruhat-Tits building, by constructing the finite difference equations that must be satisfied and explaining how they arise, by only using the geometric properties of the building.

On détermine explicitement la formule de Macdonald pour les fonctions sphériques sur tout immeuble de Bruhat-Tits localement fini, régulier et affine en construisant d’une manière motivée les équations aux différences finies qu’elles doivent satisfaire, n’utilisant que les propriétés géométriques de l’immeuble.

DOI: 10.5802/afst.1321
A. M. Mantero 1; A. Zappa 2

1 D.S.A., Facoltà di Architettura, Università di Genova, St. S. Agostino 37, 16123 Genova, Italy
2 D.I.M.A., Università di Genova, V. Dodecaneso 35, 16146 Genova, Italy
@article{AFST_2011_6_20_4_669_0,
     author = {A. M. Mantero and A. Zappa},
     title = {Macdonald formula for spherical functions on affine buildings},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {669--758},
     publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 20},
     number = {4},
     year = {2011},
     doi = {10.5802/afst.1321},
     mrnumber = {2918211},
     zbl = {1247.43012},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1321/}
}
TY  - JOUR
AU  - A. M. Mantero
AU  - A. Zappa
TI  - Macdonald formula for spherical functions on affine buildings
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2011
SP  - 669
EP  - 758
VL  - 20
IS  - 4
PB  - Université Paul Sabatier, Institut de Mathématiques
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1321/
DO  - 10.5802/afst.1321
LA  - en
ID  - AFST_2011_6_20_4_669_0
ER  - 
%0 Journal Article
%A A. M. Mantero
%A A. Zappa
%T Macdonald formula for spherical functions on affine buildings
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2011
%P 669-758
%V 20
%N 4
%I Université Paul Sabatier, Institut de Mathématiques
%C Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1321/
%R 10.5802/afst.1321
%G en
%F AFST_2011_6_20_4_669_0
A. M. Mantero; A. Zappa. Macdonald formula for spherical functions on affine buildings. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 20 (2011) no. 4, pp. 669-758. doi : 10.5802/afst.1321. https://afst.centre-mersenne.org/articles/10.5802/afst.1321/

[1] Cartwright (D.I.) and Mlotkowski (W.).— Harmonic Analysis for Groups Acting on Triangle Buildings, J. Austral. Math. Soc. (Series A), 56 n. 3: p. 345-383 (1994). | MR | Zbl

[2] Cartwright (D.I.).— Spherical Harmonic Analysis on Buildings of Type A ˜ n , Monatsh. Math., 133 n. 2: p. 93-109 (2001). | MR | Zbl

[3] Humphreys (J. E.).— Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, 9, Springer-Verlag, New York-Berlin (1978). | MR | Zbl

[4] Humphreys (J. E.).— Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, 29, C.U.P. Cambridge (1990). | MR | Zbl

[5] Macdonald (I. G.).— Spherical Functions on a Group of p-adic type, Publications of the Ramanujan Institute. Ramanujan Institute n. 2, Centre for Advanced Studies in Mathematics, University of Madras, Madras (1971). | MR | Zbl

[6] Macdonald (I. G.).— Affine Hecke Algebras and Orthogonal Polynomials, Cambridge Tracts in Mathematics, 157, C.U.P. Cambridge (2003). | MR | Zbl

[7] Mantero (A. M.) and Zappa (A.).— Spherical Functions and Spectrum of the Laplace Operators on Buidings of rank 2, Boll. Un. Mat. Ital. B (7), 8: p. 419-475 (1994). | MR | Zbl

[8] Mantero (A. M.) and Zappa (A.).— Eigenvalues of the vertex set Hecke algebra of an affine building, preprint.

[9] Opdam (E. M.).— On the spectral decomposition of affine Hecke algebras, J. Inst. Math. Jussieu 3 n. 4: p. 531-648 (2007). | MR | Zbl

[10] Parkinson (J.).— Buildings and Hecke Algebras, J. Algebra 297 n. 1, p. 1-49 (2006). | MR | Zbl

[11] Parkinson (J.).— Spherical Harmonic analysis on Affine Buildings, Math. Z. 253 n. 3, p. 571-606 (2006). | MR | Zbl

[12] Ram (A.).— Alcove walks, Hecke algebras, spherical functions, crystal and column strict tableaux, Pure Appl. Math. Q. 2, n. 4, part 2: p. 963-1013 (2006). | MR | Zbl

Cited by Sources: