In this paper we introduce a new invariant for extensions of difference fields, the distant degree, and discuss its properties.
Dans cet article nous introduisons un nouvel invariant pour les extensions de corps aux différences, le degré distant, et discutons ses propriétés.
@article{AFST_2012_6_21_2_217_0, author = {Zo\'e Chatzidakis and Ehud Hrushovski}, title = {An invariant for difference field extensions}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {217--234}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 21}, number = {2}, year = {2012}, doi = {10.5802/afst.1334}, mrnumber = {2978095}, zbl = {1250.12005}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1334/} }
TY - JOUR AU - Zoé Chatzidakis AU - Ehud Hrushovski TI - An invariant for difference field extensions JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2012 SP - 217 EP - 234 VL - 21 IS - 2 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1334/ DO - 10.5802/afst.1334 LA - en ID - AFST_2012_6_21_2_217_0 ER -
%0 Journal Article %A Zoé Chatzidakis %A Ehud Hrushovski %T An invariant for difference field extensions %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2012 %P 217-234 %V 21 %N 2 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1334/ %R 10.5802/afst.1334 %G en %F AFST_2012_6_21_2_217_0
Zoé Chatzidakis; Ehud Hrushovski. An invariant for difference field extensions. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 21 (2012) no. 2, pp. 217-234. doi : 10.5802/afst.1334. https://afst.centre-mersenne.org/articles/10.5802/afst.1334/
[1] Cohn (R.M.).— Difference algebra, Tracts in Mathematics 17, Interscience Pub. (1965). | MR | Zbl
[2] Ivanov (A.A.).— The problem of finite axiomatizability for strongly minimal theories of graphs (Russian), Algebra i Logika 28 (1989), no. 3, p. 280-297, 366; translation in Algebra and Logic 28 (1989), no. 3, p. 183-194 (1990). | MR | Zbl
[3] Möller (R.G.).— Structure theory of totally disconnected locally compact groups via graphs and permutations, Canad. J. Math. 54, no. 4, p. 795-827 (2002). | MR
[4] Pillay (A.).— Geometric stability theory, Oxford Science Publications, Oxford. Univ. Press, New York (1996). | MR | Zbl
[5] Willis (G.).— The structure of totally disconnected locally compact groups, Math. Ann. 300, p. 341-363 (1994). | MR | Zbl
[6] Willis (G.).— Further properties of the scale function on a totally disconnected group, J. of Algebra 237, p. 142-164 (2001). | MR
Cited by Sources: