logo AFST
An invariant for difference field extensions
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 21 (2012) no. 2, pp. 217-234.

In this paper we introduce a new invariant for extensions of difference fields, the distant degree, and discuss its properties.

Dans cet article nous introduisons un nouvel invariant pour les extensions de corps aux différences, le degré distant, et discutons ses propriétés.

Received:
Accepted:
Published online:
DOI: https://doi.org/10.5802/afst.1334
Zoé Chatzidakis 1; Ehud Hrushovski 2

1. Université Paris Diderot Paris 7 – IMJ UFR de Mathématiques case 7012, site Chevaleret – 75205 Paris Cedex 13, France
2. Institute of Mathematics – Hebrew University (Giv’at Ram) – Jerusalem 91904, Israel.
@article{AFST_2012_6_21_2_217_0,
     author = {Zo\'e Chatzidakis and Ehud Hrushovski},
     title = {An invariant for difference field extensions},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {217--234},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 21},
     number = {2},
     year = {2012},
     doi = {10.5802/afst.1334},
     zbl = {1250.12005},
     mrnumber = {2978095},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1334/}
}
TY  - JOUR
AU  - Zoé Chatzidakis
AU  - Ehud Hrushovski
TI  - An invariant for difference field extensions
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2012
DA  - 2012///
SP  - 217
EP  - 234
VL  - Ser. 6, 21
IS  - 2
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1334/
UR  - https://zbmath.org/?q=an%3A1250.12005
UR  - https://www.ams.org/mathscinet-getitem?mr=2978095
UR  - https://doi.org/10.5802/afst.1334
DO  - 10.5802/afst.1334
LA  - en
ID  - AFST_2012_6_21_2_217_0
ER  - 
%0 Journal Article
%A Zoé Chatzidakis
%A Ehud Hrushovski
%T An invariant for difference field extensions
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2012
%P 217-234
%V Ser. 6, 21
%N 2
%I Université Paul Sabatier, Toulouse
%U https://doi.org/10.5802/afst.1334
%R 10.5802/afst.1334
%G en
%F AFST_2012_6_21_2_217_0
Zoé Chatzidakis; Ehud Hrushovski. An invariant for difference field extensions. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 21 (2012) no. 2, pp. 217-234. doi : 10.5802/afst.1334. https://afst.centre-mersenne.org/articles/10.5802/afst.1334/

[1] Cohn (R.M.).— Difference algebra, Tracts in Mathematics 17, Interscience Pub. (1965). | MR 205987 | Zbl 0127.26402

[2] Ivanov (A.A.).— The problem of finite axiomatizability for strongly minimal theories of graphs (Russian), Algebra i Logika 28 (1989), no. 3, p. 280-297, 366; translation in Algebra and Logic 28 (1989), no. 3, p. 183-194 (1990). | MR 1066316 | Zbl 0727.05028

[3] Möller (R.G.).— Structure theory of totally disconnected locally compact groups via graphs and permutations, Canad. J. Math. 54, no. 4, p. 795-827 (2002). | MR 1913920

[4] Pillay (A.).— Geometric stability theory, Oxford Science Publications, Oxford. Univ. Press, New York (1996). | MR 1429864 | Zbl 0871.03023

[5] Willis (G.).— The structure of totally disconnected locally compact groups, Math. Ann. 300, p. 341-363 (1994). | MR 1299067 | Zbl 0811.22004

[6] Willis (G.).— Further properties of the scale function on a totally disconnected group, J. of Algebra 237, p. 142-164 (2001). | MR 1813900

Cited by Sources: