The Reidemeister-Turaev torsion of standard Spin c structures on Seifert fibered 3-manifolds
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 21 (2012) no. 4, pp. 745-768.

The Reidemeister-Turaev torsion is an invariant of 3-manifolds equipped with Spin c structures. Here, a Spin c structure of a 3-manifold is a homology class of non-singular vector fields on it. Each Seifert fibered 3-manifold has a standard Spin c structure, which is represented as a non-singular vector field the set of whose orbits give a Seifert fibration. We provide an algorithm for computing the Reidemeister-Turaev torsion of the standard Spin c structure on a Seifert fibered 3-manifold. The machinery used to compute the torsion is that of punctured Heegaard diagrams.

La torsion de Reidemeister-Turaev est un invariant des 3-variétés avec structure Spin c . Ici, une structure Spin c d’une 3-variété est une classe d’homologie de champ de vecteurs sans singularités sur elle. Chaque variété de Seifert a une structure Spin c standard, qui est représentée comme un champ de vecteurs sans singularités dont l’ensemble des orbites donne une fibration de Seifert. Nous fournissons un algorithme pour calculer la torsion de Reidemeister-Turaev de la structure Spin c standard sur une variété de Seifert. La technique utilisée pour calculer la torsion est celle des diagrammes de Heegaard percés.

DOI: 10.5802/afst.1349

Yuya Koda 1

1 Mathematical Institute, Tohoku University, Sendai, 980-8578, Japan
@article{AFST_2012_6_21_4_745_0,
     author = {Yuya Koda},
     title = {The {Reidemeister-Turaev} torsion of standard {Spin}$^c$ structures on {Seifert} fibered 3-manifolds},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {745--768},
     publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 21},
     number = {4},
     year = {2012},
     doi = {10.5802/afst.1349},
     mrnumber = {3052029},
     zbl = {1255.57022},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1349/}
}
TY  - JOUR
AU  - Yuya Koda
TI  - The Reidemeister-Turaev torsion of standard Spin$^c$ structures on Seifert fibered 3-manifolds
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2012
SP  - 745
EP  - 768
VL  - 21
IS  - 4
PB  - Université Paul Sabatier, Institut de Mathématiques
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1349/
DO  - 10.5802/afst.1349
LA  - en
ID  - AFST_2012_6_21_4_745_0
ER  - 
%0 Journal Article
%A Yuya Koda
%T The Reidemeister-Turaev torsion of standard Spin$^c$ structures on Seifert fibered 3-manifolds
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2012
%P 745-768
%V 21
%N 4
%I Université Paul Sabatier, Institut de Mathématiques
%C Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1349/
%R 10.5802/afst.1349
%G en
%F AFST_2012_6_21_4_745_0
Yuya Koda. The Reidemeister-Turaev torsion of standard Spin$^c$ structures on Seifert fibered 3-manifolds. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 21 (2012) no. 4, pp. 745-768. doi : 10.5802/afst.1349. https://afst.centre-mersenne.org/articles/10.5802/afst.1349/

[1] Amendola (G.), Benedetti (R.), Costantino (F.), Petronio (C.).— Branched spines of 3-manifolds and torsion of Euler structures. Rend. Ist. Mat. Univ. Trieste 32, p. 1-33 (2001). | MR | Zbl

[2] Benedetti (R.), Petronio (C.).— Branched Standard Spines of 3-manifolds (Lecture Notes in Math. 1653). Springer-Verlag, Berlin-Heiderberg-New York (1997). | MR | Zbl

[3] Benedetti (R.), Petronio (C.).— Reidemeister-Turaev torsion of 3-dimensional Euler structures with simple boundary tangency and pseudo-Legendrian knots. Manuscripta Math. 106, p. 13-74 (2001). | MR | Zbl

[4] Floyd (W.), Oertel (U.).— Incompressible surfaces via branched surfaces. Topology 23, p. 117-125 (1984). | MR | Zbl

[5] Fomenko (A.), Matveev (S.).— Algorithmic and Computer Methods for Three-Manifolds (Mathematics and its Applications). Kluwer Academic Publishers, Dordrecht (1997). | MR | Zbl

[6] Koda (Y.).— Spines, Heegaard splittings and the Reidemeister-Turaev torsion of Euler structure. Tokyo J. Math. 30, p. 417-439 (2007). | MR | Zbl

[7] Koda (Y.).— A Heegaard-type presentation of branched spines and the Reidemeister-Turaev torsion, Math. Z. 260, p. 203-228 (2008). | MR | Zbl

[8] Meng (G.), Taubes (C. H.).— SW ̲ = Milnor torsion, Math. Res. Lett. 3, p. 137-147 (1996). | MR | Zbl

[9] Milnor (J. W.).— On the 3-dimensional Brieskorn manifolds M(p,q,r), in “Knots, groups and 3-manifolds: Papers dedicated to the memory of R.H. Fox" (Neuwirth L. P. ed.), Ann. of Math. Stud. 84, Princeton University Press, Princeton, N.J., p. 175-225 (1975). | MR | Zbl

[10] Neumann (W. D.), Raymond (F.).— Seifert manifolds, plumbing, μ-invariant and orientation reversing maps, in “Algebraic and Geometric Topology: Proceedings of a Symposium held at Santa Barbara in honor of Raymond L. Wilder, July 25-29, 1977" (Millett, K. C. ed.), Lecture Notes in Math. 664, p. 163-196 (1978). | MR | Zbl

[11] Nicolaescu (L. I.).— The Reidemeister Torsion of 3-Manifolds, de Gruyter Stud. Math. 30, de Gruyter, Berlin (2003). | MR | Zbl

[12] Oertel (U.).— Incompressible branched surfaces. Invent. Math. 76, p. 385-410 (1984). | MR | Zbl

[13] Reidemeister (K.).— Homotopieringe und Linseräume, Abh. Math. Sem. Univ. Hamburg. 11, p. 102-109 (1935). | Zbl

[14] Taniguchi (T.), Tsuboi (K.), Yamashita (M.).— Systematic singular triangulations for all Seifert manifolds. Tokyo J. Math. 28, p. 539-561 (2005). | MR | Zbl

[15] Turaev (V.).— Euler structure, nonsingular vector flows, and Reidemeister-type torsions. Math. USSR-Izv. 34, p. 627-662 (1990). | MR | Zbl

[16] Turaev (V.).— Torsion invariants of Spin c -structures on 3-manifolds. Math. Res. Lett. 4, p. 679-695 (1997). | MR | Zbl

[17] Turaev (V.).— A combinatorial formulation for the Seiberg-Witten invariants of 3-manifolds. Math. Res. Lett. 5, p. 583-598 (1998). | MR | Zbl

[18] Turaev (V.).— Introduction to combinatorial torsions (Lectures in Math. ETH Zürich). Birkhäuser Verlag, Basel-Boston-Berlin (2001). | MR | Zbl

[19] Turaev (V.).— Torsions of 3-dimensional Manifolds (Progress in Math. 208). Birkhäuser Verlag, Basel-Boston-Berlin (2002). | MR | Zbl

Cited by Sources: