We consider a compact almost complex manifold with smooth Levi convex boundary and a symplectic tame form . Suppose that is a real two-sphere, containing complex elliptic and hyperbolic points and generically embedded into . We prove a result on filling by holomorphic discs.
On considère une variété presque complexe avec la frontière Levi convexe et une tame forme symplectique . Soit une 2-sphere réelle avec des points elliptiques et hyperboliques, plongée génériquement dans . On démontre un résultat sur le remplissage de par des disques holomorphes.
@article{AFST_2012_6_21_4_783_0, author = {Herv\'e Gaussier and Alexandre Sukhov}, title = {Levi-flat filling of real two-spheres in symplectic manifolds {(II)}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {783--816}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 21}, number = {4}, year = {2012}, doi = {10.5802/afst.1351}, mrnumber = {3052031}, zbl = {1260.53138}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1351/} }
TY - JOUR AU - Hervé Gaussier AU - Alexandre Sukhov TI - Levi-flat filling of real two-spheres in symplectic manifolds (II) JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2012 SP - 783 EP - 816 VL - 21 IS - 4 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1351/ DO - 10.5802/afst.1351 LA - en ID - AFST_2012_6_21_4_783_0 ER -
%0 Journal Article %A Hervé Gaussier %A Alexandre Sukhov %T Levi-flat filling of real two-spheres in symplectic manifolds (II) %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2012 %P 783-816 %V 21 %N 4 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1351/ %R 10.5802/afst.1351 %G en %F AFST_2012_6_21_4_783_0
Hervé Gaussier; Alexandre Sukhov. Levi-flat filling of real two-spheres in symplectic manifolds (II). Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 21 (2012) no. 4, pp. 783-816. doi : 10.5802/afst.1351. https://afst.centre-mersenne.org/articles/10.5802/afst.1351/
[1] Arnold (V.I.).— On a characteristic class appearing in the quantization condition, Funktsion. Anal. i Prilozhen. 1, p. 1-14 (1967). | MR | Zbl
[2] Bedford (E.), Klingenberg (W.).— On the envelope of holomorphy of a -sphere in . J. Amer. Math. Soc. 4, p. 623-646 (1991). | MR | Zbl
[3] Chirka (E.).— Lectures on almost complex analysis, Lecture notes (2003).
[4] Chirka (E.).— Complex analytic sets. Kluwer (1989). | MR | Zbl
[5] Eliashberg (Y.).— Filling by holomorphic discs and its applications. Geometry of low-dimensional manifolds, 2 (Durham, 1989), p. 45-67, London Math. Soc. Lecture Note Ser., 151, Cambridge Univ. Press, Cambridge (1990). | MR | Zbl
[6] Eliashberg (Y.), Thurston (W.).— Confoliations. University Lecture Series, 13. American Mathematical Society, Providence, RI, x+66 pp (1998). | MR | Zbl
[7] Fornaess (J.E.), Ma (D.).— A -sphere in that cannot be filled in with analytic disks. Internat. Math. Res. Notices 1, p. 17-22 (1995). | MR | Zbl
[8] Forstneric (F.).— Complex tangents of real surfaces in complex surfaces. Duke Math. J. 67, p. 353-376 (1992). | MR | Zbl
[9] Gromov (M.).— Pseudoholomorphic curves in symplectic manifolds. Invent. Math. 82, p. 307-347 (1985). | MR | Zbl
[10] Gaussier (H.), Sukhov (A.).— Levi-flat filling of real two-spheres in symplectic manifolds (I). Annales Fac. Sci. Toulouse, XX, p. 515-539 (2011). | Numdam | MR | Zbl
[11] Hind (R.).— Filling by holomorphic disks with weakly pseudoconvex boundary conditions. Geom. Funct. Anal. 7, p. 462-495 (1997). | MR | Zbl
[12] Hofer (H.), Lizan (V.), Sikorav (J.C.).— On genericity for holomorphic curves in four-dimensional almost-complex manifolds The Journal of Geometric Analysis 7, p. 149-159 (1998). | MR | Zbl
[13] Ivashkovich (S.), Shevchishin (V.).— Gromov’s compactness theorem for J-complex curves with boundary, IMRN, 22 (2000). | Zbl
[14] Kruzhilin (N.).— Two-dimensional spheres in the boundaries of strictly pseudoconvex domains in . Math. USSR Izvetsia 39, 1151-1187 (1992). | MR | Zbl
[15] Labourie (F.).— Exemples de courbes pseudo-holomorphes en géométrie riemannienne, in Holomorphic curves in symplectic geometry, p. 251-269, Progr. Math. 117, Birkhäuser, Basel (1994). | MR
[16] McDuff (D.), Salamon (D.).— -holomorphic curves and symplectic topology. American Mathematical Society Colloquium Publications, 52. American Mathematical Society, Providence, RI, 2004. xii+669 pp. | MR | Zbl
[17] Nemirovski (S.).— Complex analysis and differential topology on complex surfaces. Russian Math. Surveys 54, 729-752 (1999). | MR | Zbl
[18] Pansu (P.).— Compactness. in Holomorphic curves in symplectic geometry, 233-249, Progr. Math., 117, Birkhäuser, Basel (1994). | MR
[19] Sikorav (J.C.).— Some properties of holomorphic curves in almost complex manifolds. in Holomorphic curves in symplectic geometry, p. 165-189, Progr. Math., 117, Birkhäuser, Basel (1994). | MR
[20] Sukhov (A.), Tumanov (A.).— Regularization of almost complex structures and gluing holomorphic discs to tori,Ann. Scuola Norm. Sup. Pisa (5),X, p. 389-411 (2011). | MR | Zbl
[21] Ye (R.).— Filling by holomorphic curves in symplectic -manifolds. Trans. Amer. Math. Soc. 350, p. 213-250 (1998). | MR | Zbl
Cited by Sources: