Bourgain’s discretization theorem asserts that there exists a universal constant with the following property. Let be Banach spaces with . Fix and set . Assume that is a -net in the unit ball of and that admits a bi-Lipschitz embedding into with distortion at most . Then the entire space admits a bi-Lipschitz embedding into with distortion at most . This mostly expository article is devoted to a detailed presentation of a proof of Bourgain’s theorem.
We also obtain an improvement of Bourgain’s theorem in the important case when for some : in this case it suffices to take for the same conclusion to hold true. The case of this improved discretization result has the following consequence. For arbitrarily large there exists a family of -point subsets of such that if we write then any embedding of , equipped with the Earthmover metric (a.k.a. transportation cost metric or minimumum weight matching metric) incurs distortion at least a constant multiple of ; the previously best known lower bound for this problem was a constant multiple of .
Le théorème de discrétisation de Bourgain affirme qu’il existe une constante universelle avec la propriété suivante. Soient des espaces de Banach avec . Considérons fixé et posons . Supposons que est un -réseau dans la boule unité et que admet un plongement bi-Lipschitz dans de distorsion au plus . Alors l’espace tout entier admet un plongement bi-Lipschitz dans de distorsion au plus . Cet article, d’exposition pour l’essentiel, est consacré à une présentation détaillée d’une preuve du théorème de Bourgain.
Nous obtenons aussi une amélioration du théorème de Bourgain dans le cas important où pour un : dans ce cas il suffit de prendre pour que la même conclusion soit valable. Le cas de ce résultat de discrétisation amélioré a la conséquence suivante. Pour arbitrairement grand, il existe une famille de sous-ensembles à points de telle que si nous écrivons alors tout plongement dans de , muni de la métrique du coût du transport (ou métrique de l’appariement de poids minimal), a nécessairement une distorsion au moins égale à une constante fois . Jusqu’à présent, la meilleure minoration connue pour ce problème était par un multiple de .
Ohad Giladi 1; Assaf Naor 2; Gideon Schechtman 3
@article{AFST_2012_6_21_4_817_0, author = {Ohad Giladi and Assaf Naor and Gideon Schechtman}, title = {Bourgain{\textquoteright}s discretization theorem}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {817--837}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 21}, number = {4}, year = {2012}, doi = {10.5802/afst.1352}, mrnumber = {3052032}, zbl = {1283.46015}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1352/} }
TY - JOUR AU - Ohad Giladi AU - Assaf Naor AU - Gideon Schechtman TI - Bourgain’s discretization theorem JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2012 SP - 817 EP - 837 VL - 21 IS - 4 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1352/ DO - 10.5802/afst.1352 LA - en ID - AFST_2012_6_21_4_817_0 ER -
%0 Journal Article %A Ohad Giladi %A Assaf Naor %A Gideon Schechtman %T Bourgain’s discretization theorem %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2012 %P 817-837 %V 21 %N 4 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1352/ %R 10.5802/afst.1352 %G en %F AFST_2012_6_21_4_817_0
Ohad Giladi; Assaf Naor; Gideon Schechtman. Bourgain’s discretization theorem. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 21 (2012) no. 4, pp. 817-837. doi : 10.5802/afst.1352. https://afst.centre-mersenne.org/articles/10.5802/afst.1352/
[1] Albiac (F.) and Kalton (N. J.).— Topics in Banach space theory, volume 233 of Graduate Texts in Mathematics. Springer, New York (2006). | MR | Zbl
[2] Austin (T.), Naor (A.), and Tessera (R.).— Sharp quantitative nonembeddability of the Heisenberg group into superre exive Banach spaces. Preprint available at http://arxiv.org/abs/1007.4238. To appear in Groups Geom. Dyn. (2010).
[3] Ball (K.).— An elementary introduction to modern convex geometry. In Flavors of geometry, volume 31 of Math. Sci. Res. Inst. Publ., pages 158. Cambridge Univ. Press, Cambridge (1997). | MR | Zbl
[4] Begun (B.).— A remark on almost extensions of Lipschitz functions. Israel J. Math., 109, p. 151-155 (1999). | MR | Zbl
[5] Benyamini (Y.) and Lindenstrauss (J.).— Geometric nonlinear functional analysis. Vol. 1, volume 48 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI (2000). | MR | Zbl
[6] Bourgain (J.).— The metrical interpretation of superre exivity in Banach spaces. Israel J. Math., 56(2), p. 222-230 (1986). | MR | Zbl
[7] Bourgain (J.).— Remarks on the extension of Lipschitz maps defined on discrete sets and uniform homeomorphisms. In Geometrical aspects of functional analysis (1985/86), volume 1267 of Lecture Notes in Math., p. 157-167. Springer, Berlin (1987). | MR | Zbl
[8] Cheeger (J.) and Kleiner (B.).— Differentiating maps into , and the geometry of BV functions. Ann. of Math. (2), 171(2), p. 1347-1385 (2010). | MR | Zbl
[9] Cheeger (J.), Kleiner (B.), and Naor (A.).— Compression bounds for Lipschitz maps from the Heisenberg group to . Acta Math., 207(2), p. 291-373 (2011). | MR
[10] Corson (H.) and Klee (V.).— Topological classification of convex sets. In Proc. Sympos. Pure Math., Vol. VII, p. 37-51. Amer. Math. Soc., Providence, R.I. (1963). | MR | Zbl
[11] Deza (M. M.) and Laurent (M.).— Geometry of cuts and metrics, volume 15 of Algorithms and Combinatorics. Springer-Verlag, Berlin (1997). | MR | Zbl
[12] Dvoretzky (A.).— Some results on convex bodies and Banach spaces. In Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), p. 123-160. Jerusalem Academic Press, Jerusalem (1961). | MR | Zbl
[13] Heinrich (S.).— Ultraproducts in Banach space theory. J. Reine Angew. Math., 313, p. 72-104 (1980). | MR | Zbl
[14] Heinrich (S.) and Mankiewicz (P.).— Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces. Studia Math., 73(3), p. 225-251 (1982). | MR | Zbl
[15] Hytönen (T.), Li (S.), and Naor (A.).— Quantitative affine approximation for UMD targets. Preprint (2011). | MR
[16] John (F.).— Extremum problems with inequalities as subsidiary conditions. In Studies and Essays Presented to R. Courant on his 60th Birthday, p. 187-204. Interscience Publishers Inc. (1948). | MR | Zbl
[17] Johnson (W. B.), Maurey (B.), and Schechtman (G.).— Non-linear factorization of linear operators. Bull. Lond. Math. Soc., 41(4), p. 663-668 (2009). | MR | Zbl
[18] Li (S.) and Naor (A.).— Discretization and affine approximation in high dimensions. Preprint available at http://arxiv.org/abs/1202.2567, to appear in Israel J. Math. (2011).
[19] Lindenstrauss (J.) and Rosenthal (H. P.).— The spaces. Israel J. Math., 7, p. 325-349 (1969). | MR | Zbl
[20] Naor (A.) and Schechtman (G.).— Planar earthmover is not in . SIAM J. Comput., 37(3), p. 804-826 (electronic) (2007). | MR | Zbl
[21] Pansu (P.).— Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. Ann. of Math. (2), 129(1), p. 1-60 (1989). | MR | Zbl
[22] Ribe (M.).— On uniformly homeomorphic normed spaces. Ark. Mat., 14(2), p. 237-244 (197)6. | MR | Zbl
[23] Torchinsky (A.).— Real-variable methods in harmonic analysis, volume 123 of Pure and Applied Mathematics. Academic Press Inc., Orlando, FL (1986). | MR | Zbl
Cited by Sources: