We investigate an explicit holomorphic correspondence on the Riemann sphere with striking dynamical behaviour: the limit set is a fractal resembling the one-skeleton of a tetrahedron and on each component of the complement of this set the correspondence behaves like a Fuchsian group.
Nous étudions une correspondance holomorphe explicite sur la sphère de Riemann ayant une dynamique remarquable : l’ensemble limite est un fractal qui ressemble au 1-squelette du tétrahèdre et sur chaque composante du complémentaire de cet ensemble, la correspondance est donnée par un groupe Fuchsien.
@article{AFST_2012_6_21_S5_1119_0, author = {Shaun Bullett and Andrew Curtis}, title = {A holomorphic correspondence at the boundary of the {Klein} combination locus}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1119--1137}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 21}, number = {S5}, year = {2012}, doi = {10.5802/afst.1363}, mrnumber = {3088268}, zbl = {06167102}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1363/} }
TY - JOUR AU - Shaun Bullett AU - Andrew Curtis TI - A holomorphic correspondence at the boundary of the Klein combination locus JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2012 SP - 1119 EP - 1137 VL - 21 IS - S5 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1363/ DO - 10.5802/afst.1363 LA - en ID - AFST_2012_6_21_S5_1119_0 ER -
%0 Journal Article %A Shaun Bullett %A Andrew Curtis %T A holomorphic correspondence at the boundary of the Klein combination locus %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2012 %P 1119-1137 %V 21 %N S5 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1363/ %R 10.5802/afst.1363 %G en %F AFST_2012_6_21_S5_1119_0
Shaun Bullett; Andrew Curtis. A holomorphic correspondence at the boundary of the Klein combination locus. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 21 (2012) no. S5, pp. 1119-1137. doi : 10.5802/afst.1363. https://afst.centre-mersenne.org/articles/10.5802/afst.1363/
[1] Bullett (S.).— A combination theorem for covering correspondences and an application to mating polynomial maps with Kleinian groups, Conformal Geometry and Dynamics 4 (2000) 75-96. | MR | Zbl
[2] Bullett (S.) and Haïssinsky (P.).— Pinching holomorphic correspondences, Conformal Geometry and Dynamics 11, p. 65-89 (2007). | MR | Zbl
[3] Bullett (S.) and Harvey (W.).— Mating quadratic maps with Kleinian groups via quasiconformal surgery, Electronic Research Announcements of the AMS 6, p. 21-30 (2000). | MR | Zbl
[4] Bullett (S.) and Penrose (C.).— Mating quadratic maps with the modular group, Inventiones Math. 115, p. 483-511 (1994). | MR | Zbl
[5] Curtis (A.).— PhD Thesis, QMUL (2013).
[6] Milnor (J.).— Dynamics in One Complex Variable, Annals of Mathematics Studies No. 160, Princeton University Press (2006). | MR | Zbl
Cited by Sources: