We prove in this paper the Hölder regularity of Almgren minimal sets of dimension 3 in around a -point and the existence of a point of particular type of a Mumford-Shah minimal set in , which is very close to a . This will give a local description of minimal sets of dimension 3 in around a singular point and a property of Mumford-Shah minimal sets in .
On prouve dans cet article la régularité Höldérienne pour les ensembles minimaux au sens d’Almgren de dimension 3 dans autour d’un point de type et dans le cas d’un ensemble Mumford-Shah minimal dans qui est très proche d’un , l’existence d’un point avec une densité particulière. Cela donne une description locale des ensembles minimaux de dimension 3 dans autour d’un point singulier et une propriété des ensembles Mumford-Shah minimaux dans .
@article{AFST_2013_6_22_3_465_0, author = {Tien Duc Luu}, title = {On some properties of three-dimensional minimal sets in ${\mathbb{R}}^4$}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {465--493}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 22}, number = {3}, year = {2013}, doi = {10.5802/afst.1379}, mrnumber = {3113023}, zbl = {1290.49093}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1379/} }
TY - JOUR AU - Tien Duc Luu TI - On some properties of three-dimensional minimal sets in ${\mathbb{R}}^4$ JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2013 SP - 465 EP - 493 VL - 22 IS - 3 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1379/ DO - 10.5802/afst.1379 LA - en ID - AFST_2013_6_22_3_465_0 ER -
%0 Journal Article %A Tien Duc Luu %T On some properties of three-dimensional minimal sets in ${\mathbb{R}}^4$ %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2013 %P 465-493 %V 22 %N 3 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1379/ %R 10.5802/afst.1379 %G en %F AFST_2013_6_22_3_465_0
Tien Duc Luu. On some properties of three-dimensional minimal sets in ${\mathbb{R}}^4$. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 22 (2013) no. 3, pp. 465-493. doi : 10.5802/afst.1379. https://afst.centre-mersenne.org/articles/10.5802/afst.1379/
[1] . Almgren (F. J.).— Some interior regularity theorems for minimal surfaces and an extension of Bernstein’s Theorem, Ann. of Math (2), Vol. 84, p. 277-292 (1966). | MR | Zbl
[2] . Allard (W. K.).— On the First Variation of a Varifold, Ann. of Math (2), Vol. 95, p. 417-491 (1972). | MR | Zbl
[3] . David (G.).— Hölder regularity of two-dimensional almost-minimal sets in , Ann. Fac. Sci. Toulouse Math, (6), 18(1) p. 65-246 (2009). | Numdam | MR | Zbl
[4] . David (G.).— -regularity for two dimensional almost-minimal sets in , Journal of Geometric Analysis, Vol 20, Number 4, p. 837-954. | MR | Zbl
[5] . David (G.).— Singular sets of minimizers for the Mumford-Shah functional, Progress in Mathematics 233 (581p.), Birkhäuser (2005). | MR | Zbl
[6] . David (G.), De Pauw (T.), and Toro (T.).— A generalization of Reifenberg’s theorem in , Geom. Funct. Anal. Vol. 18, p. 1168-1235 (2008). | MR | Zbl
[7] . David (G.) and Semmes (S.).— Uniform rectifiability and quasiminimizing sets of arbitrary codimension, Memoirs of the A.M.S. Number 687, Vol 144 (2000). | MR | Zbl
[8] . Dugundji (J.).— Topology, Allyn and Bacon, Boston (1966). | MR | Zbl
[9] . Federer (H.).— Geometric measure theory, Grundlehren der Mathematishen Wissenschaften 153, Springer Verlag (1969). | MR | Zbl
[10] . Simons (J.).— Minimal varieties in riemannian manifolds, Ann. of Math, (2), Vol. 88, p. 62-105 (1968). | MR | Zbl
[11] . Taylor (J.).— The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces, Ann. of Math. (2) 103, no. 3, p. 489-539 (1976). | MR | Zbl
Cited by Sources: