In this paper, we give a numerical characterization of nef arithmetic -Cartier divisors of -type on an arithmetic surface. Namely an arithmetic -Cartier divisor of -type is nef if and only if is pseudo-effective and .
Dans le présent article, nous donnons une caractérisation numérique des -diviseurs arithmétiques nef et de type sur une surface artihmétique. Plus exactement, nous montrons qu’un -diviseur de Cartier de type est nef si et seulement si est pseudo-effectif et .
@article{AFST_2014_6_23_3_717_0, author = {Atsushi Moriwaki}, title = {Numerical characterization of nef arithmetic divisors on arithmetic surfaces}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {717--753}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 23}, number = {3}, year = {2014}, doi = {10.5802/afst.1422}, mrnumber = {3266711}, zbl = {06374886}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1422/} }
TY - JOUR AU - Atsushi Moriwaki TI - Numerical characterization of nef arithmetic divisors on arithmetic surfaces JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2014 SP - 717 EP - 753 VL - 23 IS - 3 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1422/ DO - 10.5802/afst.1422 LA - en ID - AFST_2014_6_23_3_717_0 ER -
%0 Journal Article %A Atsushi Moriwaki %T Numerical characterization of nef arithmetic divisors on arithmetic surfaces %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2014 %P 717-753 %V 23 %N 3 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1422/ %R 10.5802/afst.1422 %G en %F AFST_2014_6_23_3_717_0
Atsushi Moriwaki. Numerical characterization of nef arithmetic divisors on arithmetic surfaces. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 23 (2014) no. 3, pp. 717-753. doi : 10.5802/afst.1422. https://afst.centre-mersenne.org/articles/10.5802/afst.1422/
[1] Abbes (A.) and Bouche (T.).— Théorème de Hilbert-Samuel “arithmétique”, Ann. Inst. Fourier(Grenoble) 45, 375-401 (1995). | EuDML | Numdam | MR | Zbl
[2] Autissier (P.).— Points entiers sur les surfaces arithmétiques, Journal für die reine und angewandte Mathematik 531, 201-235 (2001). | MR | Zbl
[3] Berman (R.) and Demailly (J.-P.).— Regularity of plurisubharmonic upper envelopes in big cohomology classes, Perspectives in Analysis, Geometry and Topology: On the Occasion of the 60th Birthday of Oleg Viro, Progress in Mathematics 296, 39-66. | MR | Zbl
[4] Boucksom (S.) and Chen (H.).— Okounkov bodies of filtered linear series, Compositio Math. 147, 1205-1229 (2011). | MR | Zbl
[5] Demailly (J.-P.).— Complex Analytic and Differential Geometry.
[6] Faltings (G.).— Calculus on arithmetic surfaces, Ann. of Math. 119, 387-424 (1984). | MR | Zbl
[7] Gillet (H.) and Soulé (C.).— An arithmetic Riemann-Roch theorem, Invent. Math. 110, 473-543 (1992). | EuDML | MR | Zbl
[8] Hriljac (P.).— Height and Arakerov’s intersection theory, Amer. J. Math., 107, 23-38 (1985). | MR | Zbl
[9] Ikoma (H.).— Boundedness of the successive minima on arithmetic varieties, to appear in J. Algebraic Geometry. | MR | Zbl
[10] Khovanskii (A.).— Newton polyhedron, Hilbert polynomial and sums of finite sets, Funct. Anal. Appl. 26, 276-281 (1993). | MR | Zbl
[11] Lipman (J.).— Desingularization of two-dimensional schemes, Ann. of Math., 107, 151-207 (1978). | MR | Zbl
[12] Moriwaki (A.).— Continuity of volumes on arithmetic varieties, J. of Algebraic Geom. 18, 407-457 (2009). | MR | Zbl
[13] Moriwaki (A.).— Zariski decompositions on arithmetic surfaces, Publ. Res. Inst. Math. Sci. 48, p. 799-898 (2012). | MR | Zbl
[14] Moriwaki (A.).— Big arithmetic divisors on , Kyoto J. Math. 51, p. 503-534 (2011). | MR | Zbl
[15] Moriwaki (A.).— Toward Dirichlet’s unit theorem on arithmetic varieties, to appear in Kyoto J. of Math. (Memorial issue of Professor Maruyama), see also (arXiv:1010.1599v4 [math.AG]). | MR | Zbl
[16] Moriwaki (A.).— Arithmetic linear series with base conditions, Math. Z., (DOI) 10.1007/s00209-012-0991-2. | MR | Zbl
[17] Randriambololona (H.).— Métriques de sous-quotient et théorème de Hilbert-Samuel arithmétique pour les faiseaux cohérents, J. Reine Angew. Math. 590, p. 67-88 (2006). | MR | Zbl
[18] Zhang (S.).— Small points and adelic metrics, Journal of Algebraic Geometry 4, p. 281-300 (1995). | MR | Zbl
Cited by Sources: