On the arithmetic of cross-ratios and generalised Mertens’ formulas
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 23 (2014) no. 5, pp. 967-1022.

We develop the relation between hyperbolic geometry and arithmetic equidistribution problems that arises from the action of arithmetic groups on real hyperbolic spaces, especially in dimension 5. We prove generalisations of Mertens’ formula for quadratic imaginary number fields and definite quaternion algebras over , counting results of quadratic irrationals with respect to two different natural complexities, and counting results of representations of (algebraic) integers by binary quadratic, Hermitian and Hamiltonian forms with error bounds. For each such statement, we prove an equidistribution result of the corresponding arithmetically defined points. Furthermore, we study the asymptotic properties of crossratios of such points, and expand Pollicott’s recent results on the Schottky-Klein prime functions.

Nous développons les liens entre la géométrie hyperbolique et les problèmes arithmétiques d’équidistribution, provenant de l’action de groupes arithmétiques sur des espaces hyperboliques réels, surtout en dimension au plus 5. Nous démontrons des généralisations de la formule de Mertens pour les corps de nombres quadratiques imaginaires et les algèbres de quaternion définies sur , des résultats de comptage d’irrationnels quadratiques en utilisant deux complexités naturelles, et des résultats de comptage avec termes d’erreur de représentations d’entiers (algébriques) par des formes binaires quadratiques, hermitiennes ou hamiltoniennes. Pour tout tel énoncé, nous démontrons un résultat d’équidistribution des points arithmétiquement définis correspondants. De plus, nous étudions les propriétés asymptotiques des birapports de tels points, et nous étendons les résultats récents de Pollicott sur les fonctions premières de Schottky-Klein.

@article{AFST_2014_6_23_5_967_0,
     author = {Jouni Parkkonen and Fr\'ed\'eric Paulin},
     title = {On the arithmetic of cross-ratios and generalised {Mertens{\textquoteright}} formulas},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {967--1022},
     publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 23},
     number = {5},
     year = {2014},
     doi = {10.5802/afst.1433},
     mrnumber = {3294599},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1433/}
}
TY  - JOUR
AU  - Jouni Parkkonen
AU  - Frédéric Paulin
TI  - On the arithmetic of cross-ratios and generalised Mertens’ formulas
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2014
SP  - 967
EP  - 1022
VL  - 23
IS  - 5
PB  - Université Paul Sabatier, Institut de Mathématiques
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1433/
DO  - 10.5802/afst.1433
LA  - en
ID  - AFST_2014_6_23_5_967_0
ER  - 
%0 Journal Article
%A Jouni Parkkonen
%A Frédéric Paulin
%T On the arithmetic of cross-ratios and generalised Mertens’ formulas
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2014
%P 967-1022
%V 23
%N 5
%I Université Paul Sabatier, Institut de Mathématiques
%C Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1433/
%R 10.5802/afst.1433
%G en
%F AFST_2014_6_23_5_967_0
Jouni Parkkonen; Frédéric Paulin. On the arithmetic of cross-ratios and generalised Mertens’ formulas. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 23 (2014) no. 5, pp. 967-1022. doi : 10.5802/afst.1433. https://afst.centre-mersenne.org/articles/10.5802/afst.1433/

[1] Babillot (M.).— On the mixing property for hyperbolic systems. Israel J. Math. 129 p. 61-76 (2002). | MR | Zbl

[2] Beardon (A. F.).— The geometry of discrete groups. Grad. Texts Math. 91, Springer-Verlag (1983). | MR | Zbl

[3] Benoist (Y.) and Quint (J.-F.).— Random walks on finite volume homogeneous spaces. Invent. Math. 187 p. 37-59 (2012). | MR | Zbl

[4] Cohn (H.).— A classical invitation to algebraic numbers and class fields. Springer Verlag (1978). | MR

[5] Cohn (H.).— A second course in number theory. Wiley, 1962, reprinted as Advanced number theory, Dover (1980). | MR | Zbl

[6] Cosentino (S.).— Equidistribution of parabolic fixed points in the limit set of Kleinian groups. Erg. Theo. Dyn. Syst. 19 p. 1437-1484 (1999). | MR | Zbl

[7] Dal’Bo (F.), Otal (J.-P.), and Peigné (M.).— Séries de Poincaré des groupes géométriquement finis. Israel J. Math. 118 p. 109-124 (2000). | MR | Zbl

[8] Delgove (F.) and Retailleau (N.).— Sur la classification des hexagones hyperboliques à angles droits en dimension 5. This volume.

[9] Deuring (M.).— Algebren. 2nd. ed., Erg. Math. Grenz. 41, Springer Verlag (1968). | MR | Zbl

[10] Elstrodt (J.), Grunewald (F.), and Mennicke (J.).— Groups acting on hyperbolic space: Harmonic analysis and number theory. Springer Mono. Math., Springer Verlag (1998). | MR | Zbl

[11] Fenchel (W.).— Elementary geometry in hyperbolic space. de Gruyter Stud. Math. 11, de Gruyter (1989). | MR | Zbl

[12] Gorodnik (A.) and Paulin (F.).— Counting orbits of integral points in families of affine homogeneous varieties and diagonal flows. J. Modern Dynamics 8 p. 25-59 (2014).

[13] Gorodnik (A.) and Paulin (F.).— In preparation.

[14] Grotz (W.).— Mittelwert der Eulerschen ϕ-Funktion und des Quadrates der Dirichletschen Teilerfunktion in algebraischen Zahlkörpern. Monatsh. Math. 88 p. 219-228 (1979). | MR | Zbl

[15] Harcos (G.).— Equidistribution on the modular surface and L-functions. In “Homogeneous flows, moduli spaces and arithmetic", M. Einsiedler et al eds., Clay Math. Proc. 10, Amer. Math. Soc., p. 377-387 (2010). | MR | Zbl

[16] Hardy (G. H.) and Wright (E. M.).— An introduction to the theory of numbers. Oxford Univ. Press, sixth ed. (2008). | MR | Zbl

[17] Huxley (M. N.).— Exponential sums and lattice points III. Proc. London Math. Soc. 87 p. 591-609 (2003). | MR | Zbl

[18] Kellerhals (R.).— Quaternions and some global properties of hyperbolic 5-manifolds. Canad. J. Math. 55 p. 1080-1099 (2003). | MR | Zbl

[19] Kim (I.).— Counting, mixing and equidistribution of horospheres in geometrically finite rank one locally symmetric manifolds. Preprint [arXiv:1103.5003], to appear in J. reine angew. Mathematik.

[20] Krafft (V.) and Osenberg (D.).— Eisensteinreihen für einige arithmetisch definierte Untergruppen von SL 2 (). Math. Z. 204 p. 425-449 (1990). | MR | Zbl

[21] Lang (S.).— Algebraic number theory. Grad Texts Math. 2nd ed., Springer Verlag, 1994. | MR | Zbl

[22] Maclachlan (C.) and Reid (A.).— Parametrizing Fuchsian subgroups of the Bianchi groups. Canad. J. Math. 43 p. 158-181 (1991). | MR | Zbl

[23] Mohammadi (A.) and Oh (H.).— Matrix coefficients, counting and primes for orbits of geometrically finite groups. Preprint [arXiv:1208.139], to appear in J. European Math. Soc.

[24] Nagell (T.).— On the number of representations of an A-number in an algebraic field. Ark. Mat. 4 p. 467-478 (1962). | MR | Zbl

[25] Odoni (R. W. K.).— Representations of algebraic integers by binary quadratic forms and norm forms from full modules of extension fields. J. Numb. Theo. 10 p. 324-333 (1978). | MR | Zbl

[26] Oh (H.).— Orbital counting via mixing and unipotent flows. In “Homogeneous flows, moduli spaces and arithmetic", M. Einsiedler et al eds., Clay Math. Proc. 10, Amer. Math. Soc., p. 339-375 (2010). | MR

[27] Oh (H.) and Shah (N.).— Equidistribution and counting for orbits of geometrically finite hyperbolic groups. J. Amer. Math. Soc. 26 p. 511-562 (2013). | MR

[28] Oh (H.) and Shah (N.).— Counting visible circles on the sphere and Kleinian groups. Preprint [arXiv:1004.2129], to appear in “Geometry, Topology and Dynamics in Negative Curvature" (ICM 2010 satellite conference, Bangalore), C. S. Aravinda, T. Farrell, J.-F. Lafont eds, London Math. Soc. Lect. Notes.

[29] Otal (J.-P.) and Peigné (M.).— Principe variationnel et groupes kleiniens. Duke Math. J. 125 p. 15-44 (2004). | MR | Zbl

[30] Parker (J.) and Short (I.).— Conjugacy classification of quaternionic Möbius transformations. Comput. Meth. Funct. Theo. 9 p. 13-25 (2009). | MR | Zbl

[31] Parkkonen (J.) and Paulin (F.).— Prescribing the behaviour of geodesics in negative curvature. Geom. & Topo. 14 p. 277-392 (2010). | MR | Zbl

[32] Parkkonen (J.) and Paulin (F.).— Spiraling spectra of geodesic lines in negatively curved manifolds. Math. Z. 268 (2011) 101-142, Erratum: Math. Z. 276 p. 1215-1216 (2014). | MR | Zbl

[33] Parkkonen (J.) and Paulin (F.).— On the representations of integers by indefinite binary Hermitian forms. Bull. London Math. Soc. 43 p. 1048-1058 (2011). | MR | Zbl

[34] Parkkonen (J.) and Paulin (F.).— Équidistribution, comptage et approximation par irrationnels quadratiques. J. Mod. Dyn. 6 p. 1-40 (2012). | MR

[35] Parkkonen (J.) and Paulin (F.).— On the arithmetic and geometry of binary Hamiltonian forms. Appendix by Vincent Emery. Algebra & Number Theory 7 p. 75-115 (2013). | MR | Zbl

[36] Parkkonen (J.) and Paulin (F.).— Skinning measure in negative curvature and equidistribution of equidistant submanifolds. Erg. Theo. Dyn. Sys. 34 p. 1310-1342 (2014). | MR

[37] Parkkonen (J.) and Paulin (F.).— Counting arcs in negative curvature. Preprint [arXiv:1203. 0175], to appear in “Geometry, Topology and Dynamics in Negative Curvature" (ICM 2010 satellite conference, Bangalore), C. S. Aravinda, T. Farrell, J.-F. Lafont eds, London Math. Soc. Lect. Notes. | MR

[38] Parkkonen (J.) and Paulin (F.).— Counting common perpendicular arcs in negative curvature. Preprint [arXiv:1305.1332].

[39] Parkkonen (J.) and Paulin (F.).— Counting and equidistribution in Heisenberg groups. Preprint [arXiv:1402.7225].

[40] Pollicott (M.).— The Schottky-Klein prime function and counting functions for Fenchel double crosses. Preprint (2011).

[41] Roblin (T.).— Ergodicité et équidistribution en courbure négative. Mémoire Soc. Math. France, 95 (2003). | Numdam | Zbl

[42] Sarnak (P.).— Reciprocal geodesics. Clay Math. Proc. 7 p. 217-237 (2007). | MR | Zbl

[43] Serre (J.-P.).— Lectures on N X (p). Chapman & Hall/CRC Research Notes Math. 11, CRC Press (2012). | MR | Zbl

[44] Shimura (G.).— Introduction to the arithmetic theory of automorphic functions. Princeton Univ. Press (1971). | MR | Zbl

[45] Vignéras (M. F.).— Arithmétique des algèbres de quaternions. Lect. Notes in Math. 800, Springer Verlag (1980). | Zbl

[46] Walfisz (A.).— Weylsche Exponentialsummen in der neueren Zahlentheorie. VEB Deutscher Verlag der Wissenschaften (1963). | MR | Zbl

Cited by Sources: